Skip to main content
Log in

N-piperidinyl substituted trioxotriangulene as an efficient catalyst for oxygen reduction reaction in fuel cell application—a DFT study

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

We have constructed N-piperidinyl-substituted trioxotriangulene (TOT) surface as the catalyst for both the oxygen reduction reaction (ORR) pathways, i.e., 2e and 4e. Density functional theory (DFT) is used to study the 2e and 4e ORR at two active sites, the O site (oxygen) and N site (nitrogen) in the N-piperidinyl-substituted TOT surface. Reactants and intermediates adsorbate are chemisorbed while the product is physisorbed. The free energy values demonstrate that the O site favors strong catalysis for 2e and 4e pathways. In the 4e reduction pathway, associative mechanism is exothermic and highly feasible. The overpotential values are low at 0.88 V for the O-active site in the associative mechanism in the 4e pathway. All the results identify the new catalyst, N-pipeTOT surface a potential subject of study for fuel cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

The calculations have been carried out using Gaussian09 provided by Gaussian Inc.

References

  1. Zhang L, Xia Z (2011) Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J Phys Chem C 115(22):11170–11176

    Article  CAS  Google Scholar 

  2. Zhao Y et al (2013) Can boron and nitrogen Co-doping improve oxygen reduction reaction activity of carbon nanotubes? J Am Chem Soc 135(4):1201–1204

    Article  CAS  PubMed  Google Scholar 

  3. Kim M et al (2022) MOF-derived nanoporous carbons with diverse tunable nanoarchitectures. Nat Protocol 1–42.

  4. Kim M et al (2022) Strategic design of Fe and N co-doped hierarchically porous carbon as superior ORR catalyst: from the perspective of nanoarchitectonics. Chem Sci 13(36):10836–10845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim M et al (2021) KOH-Activated hollow ZIF-8 derived porous carbon: nanoarchitectured control for upgraded capacitive deionization and supercapacitor. ACS Appl Mater Interfaces 13(44):52034–52043

    Article  CAS  Google Scholar 

  6. Kim M et al (2020) Tailored Nanoarchitecturing of microporous ZIF-8 to hierarchically porous double-shell carbons and their intrinsic electrochemical property. ACS Appl Mater Interfaces 12(30):34065–34073

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Z et al (2016) Systematic study of transition-metal (Fe Co, Ni, Cu) phthalocyanines as electrocatalysts for oxygen reduction and their evaluation by DFT. RSC Adv 6(71):67049–67056

    Article  CAS  Google Scholar 

  8. Chen X et al (2012) Density Functional theory study of the oxygen reduction reaction on a cobalt–polypyrrole composite catalyst. J Phys Chem C 116(23):12553–12558

    Article  CAS  Google Scholar 

  9. Lim D-H, Wilcox J (2012) Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles. J Phys Chem C 116(5):3653–3660

    Article  CAS  Google Scholar 

  10. Modak B, Srinivasu K, Ghosh SK (2017) Exploring metal decorated porphyrin-like porous fullerene as catalyst for oxygen reduction reaction: a DFT study. Int J Hydrogen Energy 42(4):2278–2287

    Article  CAS  Google Scholar 

  11. Chen X et al (2016) A comparative DFT study of oxygen reduction reaction on mononuclear and binuclear cobalt and iron phthalocyanines. Russ J Phys Chem A 90(12):2413–2417

    Article  CAS  Google Scholar 

  12. Li F et al (2015) Atomic mechanism of electrocatalytically active Co–N complexes in graphene basal plane for oxygen reduction reaction. ACS Appl Mater Interfaces 7(49):27405–27413

    Article  CAS  PubMed  Google Scholar 

  13. Feng L-Y, Liu Y-J, Zhao J-X (2015) Iron-embedded boron nitride nanosheet as a promising electrocatalyst for the oxygen reduction reaction (ORR): a density functional theory (DFT) study. J Power Sources 287:431–438

    Article  CAS  Google Scholar 

  14. Yu L et al (2011) Oxygen reduction reaction mechanism on nitrogen-doped graphene: a density functional theory study. J Catal 282(1):183–190

    Article  CAS  Google Scholar 

  15. Liu R et al (2014) Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions. Nanoscale 6(19):11336–11343

    Article  CAS  PubMed  Google Scholar 

  16. Sun X et al (2017) The oxygen reduction reaction mechanism on Sn doped graphene as an electrocatalyst in fuel cells: a DFT study. RSC Adv 7(2):729–734

    Article  CAS  Google Scholar 

  17. Kattel S, Atanassov P, Kiefer B (2014) Density functional theory study of the oxygen reduction reaction mechanism in a BN co-doped graphene electrocatalyst. J Mater Chem A 2(26):10273–10279

    Article  CAS  Google Scholar 

  18. Dai L et al (2015) Metal-free catalysts for oxygen reduction reaction. Chem Rev 115(11):4823–4892

    Article  CAS  PubMed  Google Scholar 

  19. Zhang M et al (2019) Ultrasound-Assisted nitrogen and boron codoping of graphene oxide for efficient oxygen reduction reaction. ACS Sustain Chem Eng 7(3):3434–3442

    Article  CAS  Google Scholar 

  20. Sarapuu A et al (2018) Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal–nitrogen–carbon catalysts for alkaline membrane fuel cells. J Mater Chem A 6(3):776–804

    Article  CAS  Google Scholar 

  21. Zhang X et al (2015) The mechanisms of oxygen reduction reaction on phosphorus doped graphene: A first-principles study. J Power Sources 276:222–229

    Article  CAS  Google Scholar 

  22. Qu L et al (2010) Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano 4(3):1321–1326

    Article  CAS  PubMed  Google Scholar 

  23. Zhang J, Wang Z, Zhu Z (2013) A density functional theory study on oxygen reduction reaction on nitrogen-doped graphene. J Mol Model 19(12):5515–5521

    Article  CAS  PubMed  Google Scholar 

  24. Reda M, Hansen HA, Vegge T (2018) DFT study of stabilization effects on N-doped graphene for ORR catalysis. Catal Today 312:118–125

    Article  CAS  Google Scholar 

  25. Wei Q et al (2015) Nitrogen-Doped carbon nanotube and graphene materials for oxygen reduction reactions. Catalysts 5(3).

  26. Murata T et al (2019) Metal-free electrocatalysts for oxygen reduction reaction based on trioxotriangulene. Commun Chem 2(1):46

    Article  Google Scholar 

  27. Morita Y et al (2011) Synthetic organic spin chemistry for structurally well-defined open-shell graphene fragments. Nat Chem 3:197–204

    Article  CAS  PubMed  Google Scholar 

  28. Jin H et al (2018) Photoinduced pure spin-current in triangulene-based nano-devices. Carbon 137:1–5

    Article  Google Scholar 

  29. Thiruppathiraja T et al (2020) H, OH and COOH functionalized magnesium phthalocyanine as a catalyst for oxygen reduction reaction (ORR) – a DFT study. Int J Hydrogen Energy 45(15):8540–8548

    Article  CAS  Google Scholar 

  30. Thiruppathiraja T, Arokiyanathan AL, Lakshmipathi S (2021) Pyrrolic, pyridinic, and graphitic sumanene as metal-free catalyst for oxygen reduction reaction – a density functional theory study. Fuel Cells 21(6):490–501

    Article  CAS  Google Scholar 

  31. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789

    Article  CAS  Google Scholar 

  32. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theoret Chim Acta 28(3):213–222

    Article  CAS  Google Scholar 

  33. Frisch MJ et al Gaussian 09. 2009, Gaussian, Inc.: Wallingford, CT, USA.

  34. Priya M, Senthilkumar L, Kolandaivel P (2014) Hydrogen-bonded complexes of serotonin with methanol and ethanol: a DFT study. Struct Chem 25.

  35. Hu X et al (2010) Adsorption and Activation of O2 on Nitrogen-Doped Carbon Nanotubes. J Phys Chem C 114(21):9603–9607

    Article  CAS  Google Scholar 

  36. Legarreta-Mendoza A, Flores-Holguín N, Lardizabal-Gutiérrez D (2019) A proposal based on quantum phenomena for the ORR mechanism on nitrogen-doped carbon-based electrocatalysts. Int J Hydrogen Energy 44(24):12374–12380

    Article  CAS  Google Scholar 

  37. Reisi-Vanani A, Mehrdoust S (2016) Effect of boron doping in sumanene frame toward hydrogen physisorption: A theoretical study. Int J Hydrogen Energy 41(34):15254–15265

    Article  CAS  Google Scholar 

  38. Esrafili MD (2013) Nitrogen-doped (6,0) carbon nanotubes: a comparative DFT study based on surface reactivity descriptors. Comput Theor Chem 1015:1–7

    Article  CAS  Google Scholar 

  39. Arokiyanathan AL, Lakshmipathi S (2018) Impact of functional groups substitution on the molecular properties of magnesium and scandium phthalocyanines. Inorg Chim Acta 483:203–210

    Article  CAS  Google Scholar 

  40. Kim HW et al (2020) Mechanisms of two-electron and four-electron electrochemical oxygen reduction reactions at nitrogen-doped reduced graphene oxide. ACS Catal 10(1):852–863

    Article  CAS  Google Scholar 

  41. Cheviri M, Lakshmipathi S (2020) Cobalt phthalocyanine is a suitable scaffold for lithium polysulfide (Li2Sn n = 2–8). Chem Phys Lett 739:136942

    Article  CAS  Google Scholar 

  42. Kattel S, Wang G (2014) Reaction Pathway for oxygen reduction on fen4 embedded graphene. J Phys Chem Lett 5(3):452–456

    Article  CAS  PubMed  Google Scholar 

  43. Zhang J, Wang Z, Zhu Z (2014) The inherent kinetic electrochemical reduction of oxygen into H2O on FeN4-carbon: a density functional theory study. J Power Sources 255:65–69

    Article  CAS  Google Scholar 

  44. Yang Y et al (2018) A density functional study on the oxygen reduction reaction mechanism on FeN2-doped graphene. New J Chem 42(9):6873–6879

    Article  CAS  Google Scholar 

  45. Sun X et al (2017) The oxygen reduction reaction mechanism on Sn doped graphene as an electrocatalyst in fuel cells: A DFT study. RSC Adv 7:729–734

    Article  CAS  Google Scholar 

  46. Duan Z, Wang G (2011) A first principles study of oxygen reduction reaction on a Pt(111) surface modified by a subsurface transition metal M (M = Ni Co, or Fe). Phys Chem Chem Phys 13(45):20178–20187

    Article  CAS  PubMed  Google Scholar 

  47. Sun S, Jiang N, Xia D (2011) Density functional theory study of the oxygen reduction reaction on metalloporphyrins and metallophthalocyanines. J Phys Chem C 115:9511–9517

    Article  CAS  Google Scholar 

  48. Wang L et al (2016) Potential Application of novel boron-doped graphene nanoribbon as oxygen reduction reaction catalyst. J Phys Chem C 120(31):17427–17434

    Article  CAS  Google Scholar 

  49. Meng Y et al (2019) Rhodium and nitrogen codoped graphene as a bifunctional electrocatalyst for the oxygen reduction reaction and CO2 reduction reaction: mechanism insights. J Phys Chem C 123(9):5176–5187

    Article  CAS  Google Scholar 

  50. Zhang P et al (2018) Size effect of oxygen reduction reaction on nitrogen-doped graphene quantum dots. RSC Adv 8(1):531–536

    Article  CAS  Google Scholar 

  51. Bai X et al (2016) Theoretical insights on the reaction pathways for oxygen reduction reaction on phosphorus doped graphene. Carbon 105:214–223

    Article  CAS  Google Scholar 

  52. Li K et al (2015) The oxygen reduction reaction on Pt(111) and Pt(100) surfaces substituted by subsurface Cu: a theoretical perspective. J Mater Chem A 3(21):11444–11452

    Article  CAS  Google Scholar 

  53. Qin B et al (2019) A density functional theory study of the oxygen reduction reaction on the (111) and (100) surfaces of cobalt(II) oxide. Prog React Kinet Mech 44(2):122–131

    Article  CAS  Google Scholar 

  54. Qi W et al (2020) Mechanisms insight into oxygen reduction reaction on sulfur-doped Fe–N2 graphene electrocatalysts. Int J Hydrogen Energy 45(1):521–530

    Article  CAS  Google Scholar 

  55. Ma R et al (2019) A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. npj Comput Mater 5(1):78.

  56. Saidi WA (2013) Oxygen Reduction electrocatalysis using N-Doped graphene quantum-dots. J Phys Chem Lett 4(23):4160–4165

    Article  CAS  Google Scholar 

  57. He B et al (2020) First-principles study of the oxygen reduction reaction on the boron-doped C9N4 metal-free catalyst. Appl Surf Sci 527:146828

    Article  CAS  Google Scholar 

  58. Liang Z et al (2019) Oxygen reduction reaction mechanism on P, N co-doped graphene: a density functional theory study. New J Chem 43(48):19308–19317

    Article  CAS  Google Scholar 

  59. Zhao J, Chen Z (2015) Carbon-doped boron nitride nanosheet: an efficient metal-free electrocatalyst for the oxygen reduction reaction. J Phys Chem C 119(47):26348–26354

    Article  CAS  Google Scholar 

  60. Chanda D et al (2018) Investigation of electrocatalytic activity on a N-doped reduced graphene oxide surface for the oxygen reduction reaction in an alkaline medium. Int J Hydrogen Energy 43(27):12129–12139

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thangaraj Thiruppathiraja received financial support from the Department of Science and Technology, New Delhi, India, for DST-PURSE (II) Fellowship/2020/407.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthilkumar Lakshmipathi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 11277 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiruppathiraja, T., Lakshmipathi, S. N-piperidinyl substituted trioxotriangulene as an efficient catalyst for oxygen reduction reaction in fuel cell application—a DFT study. Ionics 29, 1115–1125 (2023). https://doi.org/10.1007/s11581-022-04860-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04860-5

Keywords

Navigation