Skip to main content
Log in

Preparation of Ni-MOF superstructure-reduced graphene oxide composite for enhanced electrochemical sensing of acetaminophen

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A Ni-MOF superstructure composed of 2D nanosheet (2D Ni-MOFss) was prepared and further combined with reduce graphene oxide (rGO) for electrochemical detection of acetaminophen (AP). The structure and properties of the 2D Ni-MOFss were characterized by SEM, XRD, XPS, and electrochemical method. The loosened 2D lamella structure endowed the 2D Ni-MOFss with improved electrocatalysis and low charge transfer resistance than bulky Ni-MOF. After integration with rGO, the composite 2D Ni-MOFss/rGO shows significantly enhanced catalysis for redox reaction of AP with high current response and low over-potential. An electrochemical sensor for AP based on the 2D Ni-MOFss/rGO shows a wide linear range of 0.036 to 50 μM, and a low detection limit of 0.012 μM. The sensor with high sensitivity, good selectivity, and stability also show satisfied recovery for detecting AP in real sample. The facile preparation and enhanced catalysis make these 2D MOF composite attractive materials for electrochemical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig.6
Fig. 7

Similar content being viewed by others

References

  1. Zhang W, Zong L, Liu S et al (2019) An electrochemical sensor based on electro-polymerization of caffeic acid and Zn/Ni-ZIF-8-800 on glassy carbon electrode for the sensitive detection of acetaminophen. Biosens Bioelectron 131:200–206. https://doi.org/10.1016/j.bios.2019.01.069

    Article  CAS  PubMed  Google Scholar 

  2. Martin FL, McLean AEM (1998) Comparison of paracetamol-induced hepatotoxicity in the rat in vivo with progression of cell injury in vitro in rat liver slices. Drug Chem Toxicol 21:477–494. https://doi.org/10.3109/01480549809002217

    Article  CAS  PubMed  Google Scholar 

  3. Dong Y, Zhou M, Zhang L (2019) 3D multiporous Co, N co-doped MoO2/MoC nanorods hybrids as improved electrode materials for highly sensitive simultaneous determination of acetaminophen and 4-aminophenol. Electrochim Acta 302:56–64. https://doi.org/10.1016/j.electacta.2019.02.006

    Article  CAS  Google Scholar 

  4. Tan C, Gao N, Zhou S et al (2014) Kinetic study of acetaminophen degradation by UV-based advanced oxidation processes. Chem Eng J 253:229–236. https://doi.org/10.1016/j.cej.2014.05.013

    Article  CAS  Google Scholar 

  5. Belal T, Awad T, Clark CR (2009) Determination of paracetamol and tramadol hydrochloride in pharmaceutical mixture using HPLC and GC-MS. J Chromatogr Sci 47:849–854. https://doi.org/10.1093/chromsci/47.10.849

    Article  CAS  PubMed  Google Scholar 

  6. Li X, Kang J, Ji H et al (2022) Past, present and future of electroanalytical sensor for aspirin, ibuprofen and paracetamol detection. Curr Pharm Anal 18:24–33. https://doi.org/10.2174/1573412917666210125115511

    Article  CAS  Google Scholar 

  7. Ryu U, Jee S, Rao PC et al (2021) Recent advances in process engineering and upcoming applications of metal-organic frameworks. Coord Chem Rev 426:213544. https://doi.org/10.1016/j.ccr.2020.213544

    Article  CAS  PubMed  Google Scholar 

  8. Liu S, Lai C, Liu X et al (2020) Metal-organic frameworks and their derivatives as signal amplification elements for electrochemical sensing. Coord Chem Rev 424:213520. https://doi.org/10.1016/j.ccr.2020.213520

    Article  CAS  Google Scholar 

  9. Liu L, Zhou Y, Liu S et al (2018) The applications of metal-organic frameworks in electrochemical sensors. ChemElectroChem 5:6–19. https://doi.org/10.1002/celc.201700931

    Article  CAS  Google Scholar 

  10. Carrasco S (2018) Metal-organic frameworks for the development of biosensors: a current overview. Biosensors 8:92. https://doi.org/10.3390/bios8040092

    Article  CAS  PubMed Central  Google Scholar 

  11. Yi FY, Chen D, Wu MK et al (2016) Chemical sensors based on metal-organic frameworks. ChemPlusChem 81:675–690. https://doi.org/10.1002/cplu.201600137

    Article  CAS  PubMed  Google Scholar 

  12. Chen Y, Li S, Zhang L et al (2022) Facile and fast synthesis of three-dimensional Ce-MOF/Ti3C2TX MXene composite for high performance electrochemical sensing of L-Tryptophan. J Solid State Chem 308:122919. https://doi.org/10.1016/j.jssc.2022.122919

    Article  CAS  Google Scholar 

  13. Chen S, Yu J, Chen Z et al (2021) Simultaneous electrochemical sensing of heavy metal ions based on a g-C3N4/CNT/NH2-MIL-88(Fe) nanocomposite. Anal Methods 13:5830–5837. https://doi.org/10.1039/d1ay01682b

    Article  CAS  PubMed  Google Scholar 

  14. Mu Z, Tian J, Wang J et al (2022) A new electrochemical aptasensor for ultrasensitive detection of endotoxin using Fe-MOF and AgNPs decorated P-N-CNTs as signal enhanced indicator. Appl Surf Sci 573:151601. https://doi.org/10.1016/j.apsusc.2021.151601

    Article  CAS  Google Scholar 

  15. Zhang HW, Li HK, Han ZY et al (2022) Incorporating fullerenes in nanoscale metal-organic matrixes: an ultrasensitive platform for impedimetric aptasensing of tobramycin. ACS Appl Mater Interfaces 14:7350–7357. https://doi.org/10.1021/acsami.1c23320

    Article  CAS  PubMed  Google Scholar 

  16. Zuo J, Yuan Y, Zhao M et al (2020) An efficient electrochemical assay for miR-3675-3p in human serum based on the nanohybrid of functionalized fullerene and metal-organic framework. Anal Chim Acta 1140:78–88. https://doi.org/10.1016/j.aca.2020.10.017

    Article  CAS  PubMed  Google Scholar 

  17. Sofi FA, Bhat MA, Majid K (2019) Cu2+-BTC based metal-organic framework: a redox accessible and redox stable MOF for selective and sensitive electrochemical sensing of acetaminophen and dopamine. New J Chem 43:3119–3127. https://doi.org/10.1039/c8nj06224b

    Article  CAS  Google Scholar 

  18. Guo H, Fan T, Yao W et al (2020) Simultaneous determination of 4-aminophenol and acetaminophen based on high electrochemical performance of ZIF-67/MWCNT-COOH/Nafion composite. Microchem J 158:105262. https://doi.org/10.1016/j.microc.2020.105262

    Article  CAS  Google Scholar 

  19. Tang J, Hui Z-Z, Hu T et al (2021) A sensitive acetaminophen sensor based on Co metal–organic framework (ZIF-67) and macroporous carbon composite. Rare Met 41:189–198. https://doi.org/10.1007/s12598-021-01709-0

    Article  CAS  Google Scholar 

  20. Wang L, Meng T, Fan Y et al (2018) Electrochemical study of acetaminophen oxidation by gold nanoparticles supported on a leaf-like zeolitic imidazolate framework. J Colloid Interface Sci 524:1–7. https://doi.org/10.1016/j.jcis.2018.04.009

    Article  CAS  PubMed  Google Scholar 

  21. Jin Y, Li X, Ge C et al (2019) Carbon nanotube hollow polyhedrons derived from ZIF-8@ZIF-67 coupled to electro-deposited gold nanoparticles for voltammetric determination of acetaminophen. Mikrochim Acta 187:6. https://doi.org/10.1007/s00604-019-3814-x

    Article  CAS  PubMed  Google Scholar 

  22. Garg N, Deep A, Sharma AL (2021) Metal-organic frameworks based nanostructure platforms for chemo-resistive sensing of gases. Coord Chem Rev 445:214073. https://doi.org/10.1016/j.ccr.2021.214073

    Article  CAS  Google Scholar 

  23. Mu Q, Zhu W, Li X et al (2020) Electrostatic charge transfer for boosting the photocatalytic CO2 reduction on metal centers of 2D MOF/rGO heterostructure. Appl. Catal., B 262:118144. https://doi.org/10.1016/j.apcatb.2019.118144

  24. Xie J, Ma R, Fang H et al (2022) MIL-101(Fe)-attached graphene oxide for high-performance supercapacitors with sound stability in acid electrolyte. Cryst Growth Des 22:2997–3006. https://doi.org/10.1021/acs.cgd.1c01451

    Article  CAS  Google Scholar 

  25. Li H-K, Ye H-L, Zhao X-X et al (2021) Artful union of a zirconium-porphyrin MOF/GO composite for fabricating an aptamer-based electrochemical sensor with superb detecting performance. Chin Chem Lett 32:2851–2855. https://doi.org/10.1016/j.cclet.2021.02.042

    Article  CAS  Google Scholar 

  26. Li Z, Ma Q, Zhang H et al (2022) Self-assembly of metal-organic frameworks on graphene oxide nanosheets and in situ conversion into a nickel hydroxide/graphene oxide battery-type electrode. Inorg Chem 61:12129–12137. https://doi.org/10.1021/acs.inorgchem.2c00911

    Article  CAS  PubMed  Google Scholar 

  27. Zhu Q-Q, Zhang H-W, Yuan R et al (2020) Ingenious fabrication of metal-organic framework/graphene oxide composites as aptasensors with superior electrochemical recognition capability. J Mater Chem C 8:15823–15829. https://doi.org/10.1039/d0tc04176a

    Article  CAS  Google Scholar 

  28. Zhou Y, Zhu L, Wang Y et al (2021) Rare-earth metal-organic framework@graphene oxide composites as high-efficiency microwave absorbents. Cryst Growth Des 21:2668–2679. https://doi.org/10.1021/acs.cgd.0c01555

    Article  CAS  Google Scholar 

  29. Ge K, Sun S, Zhao Y et al (2021) Facile synthesis of two-dimensional iron/cobalt metal-organic framework for efficient oxygen evolution electrocatalysis. Angew Chem Int Ed Engl 60:12097–12102. https://doi.org/10.1002/anie.202102632

    Article  CAS  PubMed  Google Scholar 

  30. Zhang XD, Hou SZ, Wu JX et al (2020) Two-dimensional metal-organic framework nanosheets with cobalt-porphyrins for high-performance CO2 electroreduction. Chem - Eur J 26:1604–1611. https://doi.org/10.1002/chem.201904072

    Article  CAS  PubMed  Google Scholar 

  31. M. V V, Nageswaran G, (2020) Review-2D layered metal organic framework nanosheets as an emerging platform for electrochemical sensing. J Electrochem Soc 167:136502. https://doi.org/10.1149/1945-7111/abb4f5

    Article  CAS  Google Scholar 

  32. Yan Y, Gu P, Zheng S et al (2016) Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. J Mater Chem A 4:19078–19085. https://doi.org/10.1039/c6ta08331e

    Article  CAS  Google Scholar 

  33. Carton A, Mesbah A, Mazet T et al (2007) Ab initio crystal structure of nickel(II) hydroxy-terephthalate by synchrotron powder diffraction and magnetic study. Solid State Sci 9:465–471. https://doi.org/10.1016/j.solidstatesciences.2007.04.003

    Article  CAS  Google Scholar 

  34. Zheng Y, Zheng S, Xu Y et al (2019) Ultrathin two-dimensional cobalt-organic frameworks nanosheets for electrochemical energy storage. Chem Eng J 373:1319–1328. https://doi.org/10.1016/j.cej.2019.05.145

    Article  CAS  Google Scholar 

  35. Lv Z, Zhong Q, Bu Y (2018) In-situ conversion of rGO/Ni2P composite from GO/Ni-MOF precursor with enhanced electrochemical property. Appl Surf Sci 439:413–419. https://doi.org/10.1016/j.apsusc.2017.12.185

    Article  CAS  Google Scholar 

  36. Jin Y, Xu G, Li X et al (2021) Fast cathodic reduction electrodeposition of a binder-free cobalt-doped Ni-MOF film for directly sensing of levofloxacin. J Alloys Compd 851:156823. https://doi.org/10.1016/j.jallcom.2020.156823

    Article  CAS  Google Scholar 

  37. Wang Z, Wu C, Zhang Z et al (2021) Bimetallic Fe/Co-MOFs for tetracycline elimination. J Mater Sci 56:15684–15697. https://doi.org/10.1007/s10853-021-06280-8

    Article  CAS  Google Scholar 

  38. Zhang X, Wang KP, Zhang LN et al (2018) Phosphorus-doped graphene-based electrochemical sensor for sensitive detection of acetaminophen. Anal Chim Acta 1036:26–32. https://doi.org/10.1016/j.aca.2018.06.079

    Article  CAS  PubMed  Google Scholar 

  39. Alam AU, Qin Y, Howlader MMR et al (2018) Electrochemical sensing of acetaminophen using multi-walled carbon nanotube and β-cyclodextrin. Sens Actuators B 254:896–909. https://doi.org/10.1016/j.snb.2017.07.127

    Article  CAS  Google Scholar 

  40. Guo L, Hao L, Zhang Y et al (2021) Metal-organic framework precursors derived Ni-doping porous carbon spheres for sensitive electrochemical detection of acetaminophen. Talanta 228:122228. https://doi.org/10.1016/j.talanta.2021.122228

    Article  CAS  PubMed  Google Scholar 

  41. Li F, Li R, Feng Y et al (2019) Facile synthesis of Au-embedded porous carbon from metal-organic frameworks and for sensitive detection of acetaminophen in pharmaceutical products. Mater Sci Eng C Mater Biol Appl 95:78–85. https://doi.org/10.1016/j.msec.2018.10.074

    Article  CAS  PubMed  Google Scholar 

  42. Kong F-Y, Gu S-X, Wang J-Y et al (2015) Facile green synthesis of graphene–titanium nitride hybrid nanostructure for the simultaneous determination of acetaminophen and 4-aminophenol. Sens Actuators B 213:397–403. https://doi.org/10.1016/j.snb.2015.02.120

    Article  CAS  Google Scholar 

  43. Jiang Z (2017) A novel electrochemical sensor based on SH-β-cyclodextrin functionalized gold nanoparticles/reduced-graphene oxide nanohybrids for ultrasensitive electrochemical sensing of acetaminophen and ofloxacin. Int J Electrochem. Sci 5157–5173. https://doi.org/10.20964/2017.06.28

Download references

Funding

The financial support from National Science Foundation of China (21665011) is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Meijuan Wu: investigation, data curation, writing—original draft. Liwei Wang: writing—review and editing. Fugang Xu: writing—review and editing, Guangran Ma: conceptualization, supervision.

Corresponding author

Correspondence to Guangran Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 198 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Wang, L., Xu, F. et al. Preparation of Ni-MOF superstructure-reduced graphene oxide composite for enhanced electrochemical sensing of acetaminophen. Ionics 28, 5571–5580 (2022). https://doi.org/10.1007/s11581-022-04778-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04778-y

Keywords

Navigation