Skip to main content

Advertisement

Log in

Sodiophilic silver nanoparticles anchoring on vertical graphene modified carbon cloth for longevous sodium metal anodes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Sodium metal anodes (SMAs) have been widely investigated due to the high theoretical capacity and low redox potential. However, the uncontrollable dendrite formation of SMAs seriously hinders further development. Herein, a three-dimensional (3D) nanostructure composed of sodiophilic silver nanoparticles (Ag NPs) anchored onto the vertical graphene (VG) decorated carbon cloth (CC) (Ag/VG-CC) is designed to regulate the sodium (Na) deposition behavior. The homogeneous Na deposition behavior enabled dendrite-free morphology is demonstrated by ex-situ scanning electron microscopy and in-situ optical microscopy characterizations owing to the 3D structure and sodiophilicity of Ag NPs. As a result, the Ag/VG-CC electrode maintains a high Coulombic efficiency of higher than 99.86% and high reversibility of Na plating/stripping processes over 2000 cycles at 3 mA cm−2 with 1 mAh cm−2. Furthermore, when the Na@Ag/VG-CC anode coupled with Na3V2(PO4)3@carbon cathode, the full cell presents a high reversible specific capacity of 98.6 mAh g−1 after 300 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29. https://doi.org/10.1038/nchem.2085

    Article  CAS  PubMed  Google Scholar 

  2. Lu J, Chen Z, Ma Z, Pan F, Curtiss LA, Amine K (2016) The role of nanotechnology in the development of battery materials for electric vehicles. Nat Nanotechnol 11:1031–1038. https://doi.org/10.1038/nnano.2016.207

    Article  CAS  PubMed  Google Scholar 

  3. Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1:16013. https://doi.org/10.1038/natrevmats.2016.13

    Article  CAS  Google Scholar 

  4. Yan J, Huang S, Lim YV, Xu T, Kong D, Li X, Yang HY, Wang Y (2022) Direct-ink writing 3D printed energy storage devices: from material selectivity, design and optimization strategies to diverse applications. Mater Today 54:110–152. https://doi.org/10.1016/j.mattod.2022.03.014

    Article  Google Scholar 

  5. Fang C, Huang Y, Zhang W, Han J, Deng Z, Cao Y, Yang H (2016) Routes to high energy cathodes of sodium-ion batteries. Adv Energy Mater 6:1501727. https://doi.org/10.1002/aenm.201501727

    Article  CAS  Google Scholar 

  6. Hwang J-Y, Myung S-T, Sun Y-K (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614. https://doi.org/10.1039/c6cs00776g

    Article  CAS  PubMed  Google Scholar 

  7. Sawicki M, Shaw LL (2015) Advances and challenges of sodium ion batteries as post lithium ion batteries. RSC Adv 5:53129–53154. https://doi.org/10.1039/c5ra08321d

    Article  CAS  Google Scholar 

  8. Zhou M, Shen Y, Liu J, Lv L, Gao X, Wang X, Meng X, Yang X, Zheng Y, Zhou Z (2022) First-principles study on haeckelite hexagonal monolayer with high specific capacity for sodium-ion battery. Solid State Ion 378:115898. https://doi.org/10.1016/j.ssi.2022.115898

    Article  CAS  Google Scholar 

  9. Lee B, Paek E, Mitlin D, Lee SW (2019) Sodium metal anodes: emerging solutions to dendrite growth. Chem Rev 119:5416–5460. https://doi.org/10.1021/acs.chemrev.8b00642

    Article  CAS  PubMed  Google Scholar 

  10. Zhao Y, Adair KR, Sun X (2018) Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. Energy Environ Sci 11:2673–2695. https://doi.org/10.1039/c8ee01373j

    Article  CAS  Google Scholar 

  11. Zheng X, Bommier C, Luo W, Jiang L, Hao Y, Huang Y (2019) Sodium metal anodes for room-temperature sodium-ion batteries: applications, challenges and solutions. Energy Storage Mater 16:6–23. https://doi.org/10.1016/j.ensm.2018.04.014

    Article  Google Scholar 

  12. Li T, Sun J, Gao S, Xiao B, Cheng J, Zhou Y, Sun X, Jiang F, Yan Z, Xiong S (2021) Superior sodium metal anodes enabled by sodiophilic carbonized coconut framework with 3D tubular structure. Adv Energy Mater 11:2003699. https://doi.org/10.1002/aenm.202003699

    Article  CAS  Google Scholar 

  13. Yoon HJ, Kim NR, Jin H-J, Yun YS (2018) Macroporous catalytic carbon nanotemplates for sodium metal anodes. Adv Energy Mater 8:1701261. https://doi.org/10.1002/aenm.201701261

    Article  CAS  Google Scholar 

  14. Mu X, Pan H, He P, Zhou H (2020) Li-CO2 and Na-CO2 batteries: toward greener and sustainable electrical energy storage. Adv Mater 32:1903790. https://doi.org/10.1002/adma.201903790

    Article  CAS  Google Scholar 

  15. Han S, Cai C, Yang F, Zhu Y, Sun Q, Zhu YG, Li H, Wang H, Shao-Horn Y, Sun X, Gu M (2020) Interrogation of the reaction mechanism in a Na-O2 battery using in situ transmission electron microscopy. ACS Nano 14:3669–3677. https://doi.org/10.1021/acsnano.0c00283

    Article  CAS  PubMed  Google Scholar 

  16. Hong X, Mei J, Wen L, Tong Y, Vasileff AJ, Wang L, Liang J, Sun Z, Dou SX (2019) Nonlithium metal-sulfur batteries: steps toward a leap. Adv Mater 31:1802822. https://doi.org/10.1002/adma.201802822

    Article  CAS  Google Scholar 

  17. Seh ZW, Sun J, Sun Y, Cui Y (2015) A highly reversible room-temperature sodium metal anode. ACS Cent Sci 1:449–455. https://doi.org/10.1021/acscentsci.5b00328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li G, Liu Z, Huang Q, Gao Y, Regula M, Wang D, Chen L-Q, Wang D (2018) Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat Energy 3:1076–1083. https://doi.org/10.1038/s41560-018-0276-z

    Article  CAS  Google Scholar 

  19. Che H, Chen S, Xie Y, Wang H, Amine K, Liao X-Z, Ma Z-F (2017) Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ Sci 10:1075–1101. https://doi.org/10.1039/c7ee00524e

    Article  CAS  Google Scholar 

  20. Hueso KB, Armand M, Rojo T (2013) High temperature sodium batteries: status, challenges and future trends. Energy Environ Sci 6:734–749. https://doi.org/10.1039/c3ee24086j

    Article  CAS  Google Scholar 

  21. Wenzel S, Sedlmaier SJ, Dietrich C, Zeier WG, Janek J (2018) Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ion 318:102–112. https://doi.org/10.1016/j.ssi.2017.07.005

    Article  CAS  Google Scholar 

  22. Chi S-S, Qi X-G, Hu Y-S, Fan L-Z (2018) 3D flexible carbon felt host for highly stable sodium metal anodes. Adv Energy Mater 8:1702764. https://doi.org/10.1002/aenm.201702764

    Article  CAS  Google Scholar 

  23. Xu Y, Wang C, Matios E, Luo J, Hu X, Yue Q, Kang Y, Li W (2020) Sodium deposition with a controlled location and orientation for dendrite-free sodium metal batteries. Adv Energy Mater 10:2002308. https://doi.org/10.1002/aenm.202002308

    Article  CAS  Google Scholar 

  24. Ye L, Liao M, Zhao T, Sun H, Zhao Y, Sun X, Wang B, Peng H (2019) A sodiophilic interphase-mediated, dendrite-free anode with ultrahigh specific capacity for sodium-metal batteries. Angew Chem Int Ed 58:17054–17060. https://doi.org/10.1002/anie.201910202

    Article  CAS  Google Scholar 

  25. Cui XY, Wang YJ, Wu HD, Lin XD, Tang S, Xu P, Liao HG, Zheng MS, Dong QF (2021) A carbon foam with sodiophilic surface for highly reversible, ultra-long cycle sodium metal anode. Adv Sci 8:2003178. https://doi.org/10.1002/advs.202003178

    Article  CAS  Google Scholar 

  26. Sun J, Guo C, Cai Y, Li J, Sun X, Shi W, Ai S, Chen C, Jiang F (2019) Dendrite-free and long-life Na metal anode achieved by 3D porous Cu. Electrochim Acta 309:18–24. https://doi.org/10.1016/j.electacta.2019.04.002

    Article  CAS  Google Scholar 

  27. Huang Z, Wang Z, Wang X, Zhang S, Xu T, Zhang Z, Zang J, Kong D, Li X, Wang Y (2022) Hierarchical nanostructure of three-dimensional Au/carbon nanotube-graphene foam for high performance lithium metal anode. Solid State Ion 380:115941. https://doi.org/10.1016/j.ssi.2022.115941

    Article  CAS  Google Scholar 

  28. Luo W, Lin C-F, Zhao O, Noked M, Zhang Y, Rubloff GW, Hu L (2017) Ultrathin surface coating enables the stable sodium metal anode. Adv Energy Mater 7:1601526. https://doi.org/10.1002/aenm.201601526

    Article  CAS  Google Scholar 

  29. Liu W, Liu P, Mitlin D (2020) Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes. Adv Energy Mater 10:2002297. https://doi.org/10.1002/aenm.202002297

    Article  CAS  Google Scholar 

  30. Wang C, Wang H, Matios E, Hu X, Li W (2018) A chemically engineered porous copper matrix with cylindrical core–shell skeleton as a stable host for metallic sodium anodes. Adv Funct Mater 28:1802282. https://doi.org/10.1002/adfm.201802282

    Article  CAS  Google Scholar 

  31. Lu C, Gao Z, Liu B, Shi Z, Yi Y, Zhao W, Guo W, Liu Z, Sun J (2021) Synchronous promotion in sodiophilicity and conductivity of flexible host via vertical graphene cultivator for longevous sodium metal batteries. Adv Funct Mater 31:2101233. https://doi.org/10.1002/adfm.202101233

    Article  CAS  Google Scholar 

  32. Chen Q, Liu B, Zhang L, Xie Q, Zhang Y, Lin J, Qu B, Wang L, Sa B, Peng D-L (2021) Sodiophilic Zn/SnO2 porous scaffold to stabilize sodium deposition for sodium metal batteries. Chem Eng J 404:126469. https://doi.org/10.1016/j.cej.2020.126469

    Article  CAS  Google Scholar 

  33. Liu S, Bai M, Tang X, Wu W, Zhang M, Wang H, Zhao W, Ma Y (2021) Enabling high-performance sodium metal anode via a presodiated alloy-induced interphase. Chem Eng J 417:128997. https://doi.org/10.1016/j.cej.2021.128997

    Article  CAS  Google Scholar 

  34. Ma C, Xu T, Wang Y (2020) Advanced carbon nanostructures for future high performance sodium metal anodes. Energy Storage Mater 25:811–826. https://doi.org/10.1016/j.ensm.2019.09.007

    Article  Google Scholar 

  35. Wang H, Jiang T, Wang B, Zhang L, Kong D, Xu T, Zang J, Zhang Z, Li X, Wang Y (2021) Sodiophilic Au/reduced-graphene-oxide for dendrite free sodium metal anode. J Power Sources 507:230294. https://doi.org/10.1016/j.jpowsour.2021.230294

    Article  CAS  Google Scholar 

  36. Yang H, Zhang L, Wang H, Huang S, Xu T, Kong D, Zhang Z, Zang J, Li X, Wang Y (2022) Regulating Na deposition by constructing a Au sodiophilic interphase on CNT modified carbon cloth for flexible sodium metal anode. J Colloid Interface Sci 611:317–326. https://doi.org/10.1016/j.jcis.2021.12.076

    Article  CAS  PubMed  Google Scholar 

  37. Hu X, Matios E, Zhang Y, Wang C, Luo J, Li W (2021) Enabling stable sodium metal cycling by sodiophilic interphase in a polymer electrolyte system. J Energy Chem 63:305–311. https://doi.org/10.1016/j.jechem.2021.06.026

    Article  Google Scholar 

  38. Park S, Jin H-J, Yun YS (2020) Effects of carbon-based electrode materials for excess sodium metal anode engineered rechargeable sodium batteries. ACS Sustainable Chem Eng 8:17697–17706. https://doi.org/10.1021/acssuschemeng.0c05574

    Article  CAS  Google Scholar 

  39. Jiang F, Li X, Wang J, Gao S, Yuan H, Du W, Wu H, Zhu L, Hang Y, Yu Z, Sun J, Zhang X (2022) Long-life and efficient sodium metal anodes enabled by a sodiophilic matrix. J Alloys Compd 910:164762. https://doi.org/10.1016/j.jallcom.2022.164762

    Article  CAS  Google Scholar 

  40. Xu Y, Matios E, Luo J, Li T, Lu X, Jiang S, Yue Q, Li W, Kang Y (2021) SnO2 quantum dots enabled site-directed sodium deposition for stable sodium metal batteries. Nano Lett 21:816–822. https://doi.org/10.1021/acs.nanolett.0c04566

    Article  CAS  PubMed  Google Scholar 

  41. Wang B, Xu T, Huang S, Kong D, Li X, Wang Y (2021) Recent advances in carbon-shell-based nanostructures for advanced Li/Na metal batteries. J Mater Chem A 9:6070–6088. https://doi.org/10.1039/d0ta10884g

    Article  CAS  Google Scholar 

  42. Sun Z, Jin H, Ye Y, Xie H, Jia W, Jin S, Ji H (2021) Guiding sodium deposition through a sodiophobic–sodiophilic gradient interfacial layer for highly stable sodium metal anodes. ACS Appl Energy Mater 4:2724–2731. https://doi.org/10.1021/acsaem.1c00016

    Article  CAS  Google Scholar 

  43. Wang H, Wu Y, Liu S, Jiang Y, Shen D, Kang T, Tong Z, Wu D, Li X, Lee CS (2021) 3D Ag@C cloth for stable anode free sodium metal batteries. Small Methods 5:2001050. https://doi.org/10.1002/smtd.202001050

    Article  CAS  Google Scholar 

  44. Wang Z, Zhang X, Zhou S, Edström K, Strømme M, Nyholm L (2018) Lightweight, thin, and flexible silver nanopaper electrodes for high-capacity dendrite-free sodium metal anodes. Adv Funct Mater 28:1804038. https://doi.org/10.1002/adfm.201804038

    Article  CAS  Google Scholar 

  45. Zhu N, Mao X, Wang G, Zhu M, Wang H, Xu G, Wu M, Liu HK, Dou S-X, Wu C (2021) Stable sodium metal anodes with a high utilization enabled by an interfacial layer composed of yolk–shell nanoparticles. J Mater Chem A 9:13200–13208. https://doi.org/10.1039/d1ta01800k

    Article  CAS  Google Scholar 

  46. Wang Y, Chen B, Seo DH, Han ZJ, Wong JI, Ostrikov K, Zhang H, Yang HY (2016) MoS2-coated vertical graphene nanosheet for high-performance rechargeable lithium-ion batteries and hydrogen production. NPG Asia Mater 8:e268. https://doi.org/10.1038/am.2016.44

    Article  CAS  Google Scholar 

  47. Ghosh S, Polaki SR, Kumar N, Amirthapandian S, Kamruddin M, Ostrikov KK (2017) Process-specific mechanisms of vertically oriented graphene growth in plasmas. Beilstein J Nanotechnol 8:1658–1670. https://doi.org/10.3762/bjnano.8.166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yan J, Zhi G, Kong D, Wang H, Xu T, Zang J, Shen W, Xu J, Shi Y, Dai S, Li X, Wang Y (2020) 3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode. J Mater Chem A 8:19843–19854. https://doi.org/10.1039/d0ta05817c

    Article  CAS  Google Scholar 

  49. Wang B, Jiang T, Hou L, Wang H, Xu T, Zhang Z, Kong D, Li X, Wang Y (2021) N-doped carbon tubes with sodiophilic sites for dendrite free sodium metal anode. Solid State Ion 368:115711. https://doi.org/10.1016/j.ssi.2021.115711

    Article  CAS  Google Scholar 

  50. Liu J, Ma H, Wen Z, Li H, Yang J, Pei N, Zhang P, Zhao J (2022) Layered Ag-graphene films synthesized by gamma ray irradiation for stable lithium metal anodes in carbonate-based electrolytes. J Energy Chem 64:354–363. https://doi.org/10.1016/j.jechem.2021.04.044

    Article  Google Scholar 

  51. Kong D, Wang Y, Huang S, Zhang B, Lim YV, Sim GJ, Valdivia YAP, Ge Q, Yang HY (2020) 3D printed compressible quasi-solid-state nickel-iron battery. ACS Nano 14:9675–9686. https://doi.org/10.1021/acsnano.0c01157

    Article  CAS  PubMed  Google Scholar 

  52. Wang Y, Kong D, Shi W, Liu B, Sim GJ, Ge Q, Yang HY (2016) Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries. Adv Energy Mater 6:1601057. https://doi.org/10.1002/aenm.201601057

    Article  CAS  Google Scholar 

  53. Wang Y, Lim YV, Huang S, Ding M, Kong D, Pei Y, Xu T, Shi Y, Li X, Yang HY (2020) Enhanced sodium storage kinetics by volume regulation and surface engineering via rationally designed hierarchical porous FeP@C/rGO. Nanoscale 12:4341–4351. https://doi.org/10.1039/c9nr09278a

    Article  CAS  PubMed  Google Scholar 

  54. Zhang R, Chen X, Shen X, Zhang X-Q, Chen X-R, Cheng X-B, Yan C, Zhao C-Z, Zhang Q (2018) Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2:764–777. https://doi.org/10.1016/j.joule.2018.02.001

    Article  CAS  Google Scholar 

  55. Wei Z, Yu T, Qian L, Chen J, Wang Z, Liu Y, Sun H, Huang W (2022) Ultrathin metallic phase MoS2 nanosheets decorated hollow carbon spheres for sodium and potassium ions storage. Solid State Ion 375:115853. https://doi.org/10.1016/j.ssi.2022.115853

    Article  CAS  Google Scholar 

  56. Mo L, Chen AL, Ouyang Y, Zong W, Miao YE, Liu T (2021) Asymmetric sodiophilic host based on a Ag-modified carbon fiber framework for dendrite-free sodium metal anodes. ACS Appl Mater Interfaces 13:48634–48642. https://doi.org/10.1021/acsami.1c13018

    Article  CAS  PubMed  Google Scholar 

  57. Lee ME, Lee S, Choi J, Jin HJ, Han S, Yun YS (2019) Anode-free sodium metal batteries based on nanohybrid core-shell templates. Small 15:1901274. https://doi.org/10.1002/smll.201901274

    Article  CAS  Google Scholar 

  58. Li X, Yang G, Zhang S, Wang Z, Chen L (2019) Improved lithium deposition on silver plated carbon fiber paper. Nano Energy 66:104144. https://doi.org/10.1016/j.nanoen.2019.104144

    Article  CAS  Google Scholar 

  59. Gao S, Ju P, Liu Z, Zhai L, Liu W, Zhang X, Zhou Y, Dong C, Jiang F, Sun J (2022) Electrochemically induced phase transition in a nanoflower vanadium tetrasulfide cathode for high-performance zinc-ion batteries. J Energy Chem 69:356–362. https://doi.org/10.1016/j.jechem.2022.01.003

    Article  Google Scholar 

  60. Tian B, Huang Z, Xu X, Cao X, Wang H, Xu T, Kong D, Zhang Z, Xu J, Zang J, Li X, Wang Y (2023) Three-dimensional Ag/carbon nanotube-graphene foam for high performance dendrite free lithium/sodium metal anodes. J Mater Sci Technol 132:50–58. https://doi.org/10.1016/j.jmst.2022.05.044

    Article  Google Scholar 

  61. Wang Z, Huang Z, Wang H, Li W, Wang B, Xu J, Xu T, Zang J, Kong D, Li X, Yang HY, Wang Y (2022) 3D-printed sodiophilic V2CTx/rGO-CNT mxene microgrid aerogel for stable Na metal anode with high areal capacity. ACS Nano 16:9105–9116. https://doi.org/10.1021/acsnano.2c01186

    Article  CAS  Google Scholar 

  62. Zhang Y, Wei C, Sun J, Jian J, Jin C, Lu C, Peng L, Li S, Rümmeli MH, Yang R (2021) Au@rGO modified Ni foam as a stable host for lithium metal anode. Solid State Ion 364:115636. https://doi.org/10.1016/j.ssi.2021.115636

    Article  CAS  Google Scholar 

  63. Yun B-N, Du HL, Hwang J-Y, Jung H-G, Sun Y-K (2017) Improved electrochemical performance of boron-doped carbon-coated lithium titanate as an anode material for sodium-ion batteries. J Mater Chem A 5:2802–2810. https://doi.org/10.1039/c6ta10494k

    Article  CAS  Google Scholar 

  64. Wang Y, Cao D, Zhang K, Kang W, Wang X, Ma P, Wan Y, Cao D, Sun D (2020) Cation-exchange construction of ZnSe/Sb2Se3 hollow microspheres coated by nitrogen-doped carbon with enhanced sodium ion storage capability. Nanoscale 12:17915–17924. https://doi.org/10.1039/d0nr04665e

    Article  CAS  PubMed  Google Scholar 

  65. Zhuang Z, Ju B, Ma P, Yang L, Tu F (2021) Ultrathin graphitic C3N4 lithiophilic nanosheets regulating Li+ flux for lithium metal batteries. Ionics 27:1069–1079. https://doi.org/10.1007/s11581-020-03897-8

    Article  CAS  Google Scholar 

  66. Hou L, Xu T, Liu R, Yuan H, Kong D, Shen W, Zang J, Li X, Wang Y (2020) Investigation the sodium storage kinetics of H1.07Ti1.73O4@rGO composites for high rate and long cycle performance. J Am Ceram Soc 104:1526–1538. https://doi.org/10.1111/jace.17575

    Article  CAS  Google Scholar 

  67. Li Q, Zhu S, Lu Y (2017) 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv Funct Mater 27:1606422. https://doi.org/10.1002/adfm.201606422

    Article  CAS  Google Scholar 

  68. Ye S, Liu F, Xu R, Yao Y, Zhou X, Feng Y, Cheng X, Yu Y (2019) RuO2 particles anchored on brush-like 3D carbon cloth guide homogenous Li/Na nucleation framework for stable Li/Na anode. Small 15:1903725. https://doi.org/10.1002/smll.201903725

    Article  CAS  Google Scholar 

  69. Liu H, Osenberg M, Ni L, Hilger A, Chen L, Zhou D, Dong K, Arlt T, Yao X, Wang X, Manke I, Sun F (2021) Sodiophilic and conductive carbon cloth guides sodium dendrite-free Na metal electrodeposition. J Energy Chem 61:61–70. https://doi.org/10.1016/j.jechem.2021.03.004

    Article  Google Scholar 

  70. Fang Y, Lian R, Li H, Zhang Y, Gong Z, Zhu K, Ye K, Yan J, Wang G, Gao Y, Wei Y, Cao D (2020) Induction of planar sodium growth on mxene (Ti3C2Tx)-modified carbon cloth hosts for flexible sodium metal anodes. ACS Nano 14:8744–8753. https://doi.org/10.1021/acsnano.0c03259

    Article  CAS  PubMed  Google Scholar 

  71. Xu JY, Xie YY, Zheng JQ, Liu CY, Lai YQ, Zhang ZA (2021) A sodiophilic carbon cloth decorated with Bi-MOF derived porous Bi@C nanosheets for stable Na metal anode. J Electroanal Chem 903:115853. https://doi.org/10.1016/j.jelechem.2021.115853

    Article  CAS  Google Scholar 

  72. Xiong WS, Jiang Y, Xia Y, Qi Y, Sun W, He D, Liu Y, Zhao XZ (2018) A robust 3D host for sodium metal anodes with excellent machinability and cycling stability. Chem Commun 54:9406–9409. https://doi.org/10.1039/c8cc03996h

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Zhongyuan Youth Talent support program of Henan province (Grant no. ZYQR201912152), Academic Improvement Program of Physics of Zhengzhou University (Grant no. 2018WLTJ02), Tackling Key Scientific and Technological Problems of the Henan Province (Grant no. 212102310017), Educational Department of Henan Province (Grant no. 22A140010), Natural Science Foundation of Henan Province (222300420542), Zhengzhou University Youth Talent Start-up Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 8213 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, B., Huang, Z., Yang, H. et al. Sodiophilic silver nanoparticles anchoring on vertical graphene modified carbon cloth for longevous sodium metal anodes. Ionics 28, 4641–4651 (2022). https://doi.org/10.1007/s11581-022-04695-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04695-0

Keywords

Navigation