Skip to main content

Advertisement

Log in

3D printing PEDOT-CMC-based high areal capacity electrodes for Li-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium-ion micro-batteries (LIMBs) with higher energy density have drawn extensive attention. 3D printing technique based on direct ink writing (DIW) is a low-cost and simple approach to fabricate LIMBs especially with higher areal capacity. Herein, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) nanofibrils are first combined with carbon methyl cellulose (CMC) to achieve the 3D printing of thick LFP (LiFePO4)-PEDOT-CMC electrodes at room temperature by DIW. 3D-printed PEDOT-CMC-based composite thick electrodes demonstrate high conductivity because of the interconnected 3D network including hierarchical macro-micro porous criss-crossing filaments which can provide effective transport paths for Li ions and electrons. Further, LFP-PEDOT-CMC electrodes of different thicknesses are 3D-printed to study the effect of thicknesses on the electrochemical performances. The 3D-printed ultra-thick LFP-CMC-PEDOT electrode of 1.43 mm thickness at lower rate exhibits a highly improved areal capacity (5.63 mAh cm−2, 0.2 C) and high capacity retention (after 100 cycles, 0.2 C, 92%). The rate capability decreases steadily with the increasing thickness. However, for the extra-thick electrodes greater than 1.43 mm thickness, the discharge capacity, rate, and cycle capability decline dramatically. Electrochemical impedance spectroscopy measurements are used to explain the kinetic mechanism. For 3D-printed LFP-CMC-PEDOT electrodes blow 1.43 mm thickness, the 3D network plays the dominant role to maintain the effective transmission dynamics regardless of electrode thickness. But for the extra-thick electrodes, the greater transport distance becomes the major limiting factor resulting in the degradation of electrochemical performances. This work will offer guidance on how to apply 3D-printed ultra-thick electrodes with high energy density to LIMBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen RS, Li QH, Yu XQ, Chen L, Li H (2020) Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem Rev 120:6820–6877

    Article  CAS  Google Scholar 

  2. Mackanic DG, Chang TH, Huang ZJ, Cui Y, Bao Z (2020) Stretchable electrochemical energy storage devices. Chem Soc Rev 49:4466–4495

    Article  CAS  Google Scholar 

  3. Chen D, Lou Z, Jiang K, Shen G (2018) Device configurations and future prospects of flexible/stretchable lithium-ion batteries. Adv Funct Mater 28:1805596

    Article  Google Scholar 

  4. Zubi G, Dufo-Lopez R, Carvalho M et al (2018) The lithium-ion battery: state of the art and future perspectives. Renew Sust Energy 89:292–308

    Article  Google Scholar 

  5. Nasreldin M, Delattre R, Calmes C, Ramuz M, Sugiawati VA, Maria S, Tocnaye JLB, Djenizian T (2020) High performance stretchable Li-ion microbattery. Energy Storage Mater 33:108–115

    Article  Google Scholar 

  6. Liu QW, Zhang GF, Chen N, Feng X, Wang C, Wang J, Jin X, Qu L (2020) The first flexible dual-ion microbattery demonstrates superior capacity and ultrahigh energy density: small and powerful. Adv Funct Mater 30:2002086

    Article  CAS  Google Scholar 

  7. Li WH, Christiansen TL, Li C, Zhou YL, Fei H, Mamakhel A, Iversen BB, Watkins JJ (2018) High-power lithium-ion microbatteries from imprinted 3D electrodes of sub-10 nm LiMn2O4/Li4Ti5O12 nanocrystals and a copolymer gel electrolyte. Nano Energy 52:431–440

    Article  CAS  Google Scholar 

  8. Salian GD, Lebouin C, Demoulin A, Lepihin MS, Maria S, Galeyeva AK, Kurbatov AP, Djenizian T (2017) Electrodeposition of polymer electrolyte in nanostructured electrodes for enhanced electrochemical performance of thin-film Li-ion microbatteries. J Power Sources 340:242–246

    Article  CAS  Google Scholar 

  9. Zhao QN, Zhao KQ, Ji GP, Guo X, Han M, Wen J, Ren Z, Zhao S, Gao Z, Wang R, Li M, Sun K, Hu N, Xu C (2019) High sulfur loading, rGO-linked and polymer binder-free cathodes based on rGO wrapped N, P-codoped mesoporous carbon as sulfur host for Li-S batteries. Chem Eng J 361:1043–1052

    Article  CAS  Google Scholar 

  10. Guo QZ, Guo XH, Du KQ et al (2015) Superior high-rate capability of hierarchically structured flower-like magnetite-carbon-graphene composite for Li-ion anode. Int J Hydrog Energy 40:1846–1851

    Article  CAS  Google Scholar 

  11. Xue XY, Zhang H, Yuan S, Shi L, Zhao Y, Wang Z, Chen H, Zhu J (2020) PEDOT:PSS @molecular sieve as dual-functional additive to enhance electrochemical performance and stability of Ni-rich NMC lithium-ion batteries. Energy Technol 8:2000339

    Article  CAS  Google Scholar 

  12. Lv D, Zheng J, Li Q, Xie X, Ferrara S, Nie Z, Mehdi LB, Browning ND, Zhang JG, Graff GL, Liu J, Xiao J (2015) High energy density lithium-sulfur batteries: challenges of thick sulfur cathodes. Adv Energy Mater 5:1402290

    Article  Google Scholar 

  13. Egorov V, Gulzar U, Zhang Y, Breen S, O'Dwyer C (2020) Evolution of 3D printing method and materials for electrochemical energy storage. Adv Mater 32:2000556

    Article  CAS  Google Scholar 

  14. ASTM52900 – 15 (2016) Standard terminology for additive manufacturing general principles – Terminology. ASTM International, West Conshohocken

    Google Scholar 

  15. Zhang YB, Shi G, Qin JD, Lowe SE, Zhang S, Zhao H, Zhong YL (2019) Recent progress of direct ink writing of electronic components for advanced wearable devices. ACS Appl Electron Mater 1:1718–1734

    Article  CAS  Google Scholar 

  16. Sun K, Wei TS, Ahn BY, Seo JY, Dillon SJ, Lewis JA (2013) 3D Printing of interdigitated Li-ion microbattery architectures. Adv Mater 25:4539–4543

    Article  CAS  Google Scholar 

  17. Wei TS, Ahn BY, Grotto J, Lewis JA (2018) 3D Printing of customized Li-ion batteries with thick electrodes. Adv Mater 30:1703027

    Article  Google Scholar 

  18. Cao DX, Xing YJ, Tantratian K, Wang X, Ma Y, Mukhopadhyay A, Cheng Z, Zhang Q, Jiao Y, Chen L, Zhu H (2019) 3D printed high-performance lithium metal microbatteries enabled by nanocellulose. Adv Mater 31:1807313

    Article  Google Scholar 

  19. Dai L, Cheng T, Duan C, Zhao W, Zhang W, Zou X, Aspler J, Ni Y (2019) 3D printing using plant-derived cellulose and its derivatives: a review. Carbohydr Polym 203:71–86

    Article  CAS  Google Scholar 

  20. Wang QQ, Sun JZ, Yao Q, Ji C, Liu J, Zhu Q (2018) 3D printing with cellulose materials. Cellulose 25:4275–4301

    Article  CAS  Google Scholar 

  21. Liu CY, Xu F, Liu YL, Ma J, Liu P, Wang D, Lao C, Chen Z (2019) High mass loading ultrathick porous Li4Ti5O12 electrodes with improved areal capacity fabricated via low temperature direct writing. Electrochim Acta 314:81–88

    Article  CAS  Google Scholar 

  22. Wang Y, Zhu CX, Pfattner R et al (2017) A highly stretchable, transparent, and conductive polymer. Sci Adv 3:e1602076

    Article  Google Scholar 

  23. Rivnay J, Inal S, Collins BA, Sessolo M, Stavrinidou E, Strakosas X, Tassone C, Delongchamp DM, Malliaras GG (2016) Structural control of mixed ionic and electronic transport in conducting polymers. Nat Commun 7:11287

    Article  Google Scholar 

  24. Zhang SM, Chen YH, Liu H et al (2019) Room-temperature-formed PEDOT:PSS hydrogels enable injectable, soft, and healable organic bioelectronics. Adv Mater 32:1904752

    Article  Google Scholar 

  25. Liu Y, Tang DP, Zhong HX, Zhang Q, Yang J, Zhang L (2016) Facial synthesis of nanostructured Li4Ti5O12/PEDOT:PSS composite as anode material for lithium-ion batteries. RSC Adv 6:95512–95517

    Article  CAS  Google Scholar 

  26. Das PR, Komsiyska L, Osters O, Wittstock G (2015) PEDOT: PSS as a functional binder for cathodes in lithium ion batteries. J Electrochem Soc 162:A674–A678

    Article  CAS  Google Scholar 

  27. Sandu G, Ernould B, Rolland J, Cheminet N, Brassinne J, Das PR, Filinchuk Y, Cheng L, Komsiyska L, Dubois P, Melinte S, Gohy JF, Lazzaroni R, Vlad A (2017) Mechanochemical synthesis of PEDOT:PSS hydrogels for aqueous formulation of Li-ion battery electrodes. ACS Appl Mater Interfaces 9:34865–34874

    Article  CAS  Google Scholar 

  28. Yuk H, Lu BY, Lin S, Qu K, Xu J, Luo J, Zhao X (2020) 3D printing of conducting polymers. Nat Commun 11:1604

    Article  CAS  Google Scholar 

  29. Naficy S, Jalili R, Aboutalebi SH, Gorkin III RA, Konstantinov K, Innis PC, Spinks GM, Poulin P, Wallace GG (2014) Graphene oxide dispersions: tuning rheology to enable fabrication. Mater Horiz 1:326–331

    Article  CAS  Google Scholar 

  30. Sander JS, Erb RM, Li L et al (2016) High-performance battery electrodes via magnetic templating. Nat Energy 1:16099

    Article  CAS  Google Scholar 

  31. Kuang YD, Chen CJ, Pastel G et al (2018) Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Adv Energy Mater 8:1802398

    Article  Google Scholar 

  32. Leaf MA, Muthukumar M (2016) Electrostatic effect on the solution structure and dynamics of PEDOT:PSS. Macromolecules 49:4286–4294

    Article  CAS  Google Scholar 

  33. Eliseeva SN, Apraksin RV, Tolstopjatova EG, Kondratiev VV (2017) Electrochemical impedance spectroscopy characterization of LiFePO4 cathode material with carboxymethylcellulose and poly-3,4- ethylendioxythiophene/polystyrene sulfonate. Electrochim Acta 227:357–366

    Article  CAS  Google Scholar 

  34. Lama M, Boor SL, Raed H (2016) Carbon nanostructures modified LiFePO4 cathodes for lithium ion battery applications: optimized porosity and composition. Mater Res Express 12:125008

    Google Scholar 

  35. Raj H, Rani S, Sil A (2018) Antisite defects in sol-gel-synthesized LiFePO4 at higher temperature: effect on lithium-ion diffusion. ChemElectroChem 5:3525–3532

    Article  CAS  Google Scholar 

  36. Li Y, Wang J, Fu CC et al (2020) LiFePO4/C nanoparticle with fast ion/electron transfer capability obtained by adjusting pH values. J Mater Sci 56:640–648

    Article  Google Scholar 

Download references

Funding

The work is supported by the National Undergraduate Innovation and Entrepreneurship Training Program in China (202010731020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoling Cui.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, P., Lu, Y., Tao, P. et al. 3D printing PEDOT-CMC-based high areal capacity electrodes for Li-ion batteries. Ionics 27, 2857–2865 (2021). https://doi.org/10.1007/s11581-021-04063-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04063-4

Keywords

Navigation