Skip to main content
Log in

3D printed silicon-based micro-lattices with ultrahigh areal/gravimetric capacities and robust structural stability for lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanostructured silicon anodes have shown extraordinary lithium storage properties for lithium-ion batteries (LIBs) but are usually achieved at low areal loadings (< 1.5 mg·cm−2) with low areal capacity. Sustaining sound electrochemical performance at high loading requires proportionally higher ion/electron currents and robust structural stability in the thicker electrode. Herein, we report a three-dimensional (3D) printed silicon-graphene-carbon nanotube (3D-Si/G/C) electrode for simultaneously achieving ultrahigh areal/gravimetric capacities at high mass loading. The periodically arranged vertical channels and hierarchically porous filaments facilitate sufficient electrolyte infiltration and rapid ion diffusion, and the carbonaceous network provides excellent electron transport properties and mechanical integrity, thus endowing the printed 3D-Si/G/C electrode with fast electrochemical reaction kinetics and reversibility at high mass loading. Consequently, the 3D-Si/G/C with high areal mass loading of 12.9 mg·cm−2 exhibits excellent areal capacity of 12.8 mAh·cm−2 and specific capacity of 1007 mAh·g−1, respectively. In-situ optical microscope and ex-situ scanning electron microscope (SEM) confirm that the hierarchically porous filaments with interconnected carbon skeletons effectively suppress the volume change of silicon and maintain stable micro-lattice architecture. A 3D printed 3D-Si/G/C-1∥3D-LiFePO4/G full cell holds excellent cyclic stability (capacity retention rate of 78% after 50 cycles) with an initial Coulombic efficiency (ICE) of 96%. This work validates the feasibility of 3D printing on constructing high mass loading silicon anode for practical high energy-density LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Teki, R.; Datta, M. K.; Krishnan, R.; Parker, T. C.; Lu, T. M.; Kumta, P. N.; Koratkar, N. Nanostructured silicon anodes for lithium ion rechargeable batteries. Small 2009, 5, 2236–2242.

    CAS  PubMed  Google Scholar 

  2. Wang, B.; Ryu, J.; Choi, S.; Zhang, X. H.; Pribat, D.; Li, X. L.; Zhi, L. J.; Park, S.; Ruoff, R. S. Ultrafast-charging silicon-based corallike network anodes for lithium-ion batteries with high energy and power densities. ACS Nano 2019, 13, 2307–2315.

    CAS  PubMed  Google Scholar 

  3. An, Y. L.; Fei, H. F.; Zeng, G. F.; Ci, L.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Green, scalable, and controllable fabrication of nanoporous silicon from commercial alloy precursors for high-energy lithium-ion batteries. ACS Nano 2018, 12, 4993–5002.

    CAS  PubMed  Google Scholar 

  4. Li, Y. Z.; Yan, K.; Lee, H. W.; Lu, Z. D.; Liu, N.; Cui, Y. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 2016, 1, 15029.

    CAS  ADS  Google Scholar 

  5. Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414–429.

    CAS  Google Scholar 

  6. Li, J. Y.; Li, G.; Zhang, J.; Yin, Y. X.; Yue, F. S.; Xu, Q.; Guo, Y. G. Rational design of robust Si/C microspheres for high-tap-density anode materials. ACS Appl. Mater. Interfaces 2019, 11, 4057–4064.

    CAS  PubMed  Google Scholar 

  7. Zhu, G. J.; Chao, D. L.; Xu, W. L.; Wu, M. H.; Zhang, H. J. Microscale silicon-based anodes: Fundamental understanding and industrial prospects for practical high-energy lithium-ion batteries. ACS Nano 2021, 15, 15567–15593.

    CAS  PubMed  Google Scholar 

  8. Chen, F. Q.; Han, J. W.; Kong, D. B.; Yuan, Y. F.; Xiao, J.; Wu, S. C.; Tang, D. M.; Deng, Y. Q.; Lv, W.; Lu, J. et al. 1000 Wh·L−1 lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes. Natl. Sci. Rev. 2021, 8, nwab012.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim, H.; Seo, M.; Park, M. H.; Cho, J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem., Int. Ed. 2010, 49, 2146–2149.

    CAS  Google Scholar 

  10. Kasavajjula, U.; Wang, C. S.; Appleby, A. J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 2007, 163, 1003–1039.

    CAS  ADS  Google Scholar 

  11. Ge, M. Y.; Rong, J. P.; Fang, X.; Zhou, C. W. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 2012, 12, 2318–2323.

    CAS  PubMed  ADS  Google Scholar 

  12. Wang, W.; Kumta, P. N. Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes. ACS Nano 2010, 4, 2233–2241.

    CAS  PubMed  Google Scholar 

  13. Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithiumion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949–2954.

    CAS  PubMed  ADS  Google Scholar 

  14. Mu, T. S.; Zhao, Y.; Zhao, C. T.; Holmes, N. G.; Lou, S. F.; Li, J. J.; Li, W. H.; He, M. X.; Sun, Y. P.; Du, C. Y. et al. Stable silicon anodes by molecular layer deposited artificial zincone coatings. Adv. Funct. Mater. 2021, 31, 2010526.

    CAS  Google Scholar 

  15. He, T.; Feng, J. R.; Zhang, Y.; Zu, L. H.; Wang, G. C.; Yu, Y.; Yang, J. H. Stress-relieved nanowires by silicon substitution for high-capacity and stable lithium storage. Adv. Energy Mater. 2018, 8, 1702805.

    Google Scholar 

  16. Li, X. L.; Yan, P. F.; Xiao, X. C.; Woo, J. H.; Wang, C. M.; Liu, J.; Zhang, J. G. Design of porous Si/C-graphite electrodes with long cycle stability and controlled swelling. Energy Environ. Sci. 2017, 10, 1427–1434.

    CAS  Google Scholar 

  17. Zhou, X. M.; Liu, Y.; Ren, Y.; Mu, T. S.; Yin, X. C.; Du, C. Y.; Huo, H.; Cheng, X. Q.; Zuo, P. J.; Yin, G. P. Engineering molecular polymerization for template-free SiOx/C hollow spheres as ultrastable anodes in lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2101145.

    CAS  Google Scholar 

  18. Liu, Z. G.; Lu, D. Z.; Wang, W.; Yue, L. G.; Zhu, J. L.; Zhao, L. G.; Zheng, H.; Wang, J. B.; Li, Y. Y. Integrating dually encapsulated Si architecture and dense structural engineering for ultrahigh volumetric and areal capacity of lithium storage. ACS Nano 2022, 16, 4642–4653.

    CAS  PubMed  Google Scholar 

  19. Li, P.; Hwang, J. Y.; Sun, Y. K. Nano/microstructured silicongraphite composite anode for high-energy-density Li-ion battery. ACS Nano 2019, 13, 2624–2633.

    CAS  PubMed  Google Scholar 

  20. Chen, Z.; Wang, C.; Lopez, J.; Lu, Z. D.; Cui, Y.; Bao, Z. N. High-areal-capacity silicon electrodes with low-cost silicon particles based on spatial control of self-healing binder. Adv. Energy Mater. 2015, 5, 1401826.

    Google Scholar 

  21. Kuang, Y. D.; Chen, C. J.; Kirsch, D.; Hu, L. B. Thick electrode batteries: Principles, opportunities, and challenges. Adv. Energy Mater. 2019, 9, 1901457.

    Google Scholar 

  22. Sun, C.; Liu, S. R.; Shi, X. L.; Lai, C.; Liang, J. J.; Chen, Y. S. 3D printing nanocomposite gel-based thick electrode enabling both high areal capacity and rate performance for lithium-ion battery. Chem. Eng. J. 2020, 381, 122641.

    CAS  Google Scholar 

  23. Wang, J. W.; Sun, Q.; Gao, X. J.; Wang, C. H.; Li, W. H.; Holness, F. B.; Zheng, M.; Li, R. Y.; Price, A. D.; Sun, X. H. et al. Toward high areal energy and power density electrode for Li-ion batteries via optimized 3D printing approach. ACS Appl. Mater. Interfaces 2018, 10, 39794–39801.

    CAS  PubMed  Google Scholar 

  24. Zhou, L.; Ning, W. W.; Wu, C.; Zhang, D.; Wei, W. F.; Ma, J. M.; Li, C. C.; Chen, L. B. 3D-printed microelectrodes with a developed conductive network and hierarchical pores toward high areal capacity for microbatteries. Adv. Mater. Technol. 2019, 4, 1800402.

    Google Scholar 

  25. Tian, X. C.; Wang, T.; Ma, H.; Tang, K.; Hou, S. E.; Jin, H. Y.; Cao, G. Z. A universal strategy towards 3D printable nanomaterial inks for superior cellular high-loading battery electrodes. J. Mater. Chem. A 2021, 9, 16086–16092.

    CAS  Google Scholar 

  26. Aghajamali, M.; Xie, H. Z.; Javadi, M.; Kalisvaart, W. P.; Buriak, J. M.; Veinot, J. G. C. Size and surface effects of silicon nanocrystals in graphene aerogel composite anodes for lithium ion batteries. Chem. Mater. 2018, 30, 7782–7792.

    CAS  Google Scholar 

  27. Naficy, S.; Jalili, R.; Aboutalebi, S. H.; Gorkin III, R. A.; Konstantinov, K.; Innis, P. C.; Spinks, G. M.; Poulin, P.; Wallace, G. G. Graphene oxide dispersions: Tuning rheology to enable fabrication. Mater. Horiz. 2014, 1, 326–331.

    CAS  Google Scholar 

  28. Yao, B.; Chandrasekaran, S.; Zhang, J.; Xiao, W.; Qian, F.; Zhu, C.; Duoss, E. B.; Spadaccini, C. M.; Worsley, M. A.; Li, Y. Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 2019, 3, 459–470.

    CAS  Google Scholar 

  29. Chan, C. L. C.; Lei, I. M.; Van De Kerkhof, G. T.; Parker, R. M.; Richards, K. D.; Evans, R. C.; Huang, Y. Y. S.; Vignolini, S. 3D printing of liquid crystalline hydroxypropyl cellulose-toward tunable and sustainable volumetric photonic structures. Adv. Funct. Mater. 2022, 32, 2108566.

    CAS  Google Scholar 

  30. Sun, K.; Wei, T. S.; Ahn, B. Y.; Seo, J. Y.; Dillon, S. J.; Lewis, J. A. 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 2013, 25, 4539–4543.

    CAS  PubMed  Google Scholar 

  31. Zhu, C.; Han, T. Y. J.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 2015, 6, 6962.

    CAS  PubMed  ADS  Google Scholar 

  32. Smay, J. E.; Cesarano, J.; Lewis, J. A. Colloidal inks for directed assembly of 3-D periodic structures. Langmuir 2002, 18, 5429–5437.

    CAS  Google Scholar 

  33. Tagliaferri, S.; Panagiotopoulos, A.; Mattevi, C. Direct ink writing of energy materials. Mater. Adv. 2021, 2, 540–563.

    CAS  Google Scholar 

  34. Ding, J. H.; Ur Rahman, O.; Zhao, H. R.; Peng, W. J.; Dou, H. M.; Chen, H.; Yu, H. B. Hydroxylated graphene-based flexible carbon film with ultrahigh electrical and thermal conductivity. Nanotechnology 2017, 28, 39LT01.

    PubMed  Google Scholar 

  35. Li, X. L.; Gu, M.; Hu, S. Y.; Kennard, R.; Yan, P. F.; Chen, X. L.; Wang, C. M.; Sailor, M. J.; Zhang, J. G.; Liu, J. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 2014, 5, 4105.

    CAS  PubMed  ADS  Google Scholar 

  36. Shang, H.; Zuo, Z. C.; Yu, L.; Wang, F.; He, F.; Li, Y. L. Low-temperature growth of all-carbon graphdiyne on a silicon anode for high-performance lithium-ion batteries. Adv. Mater. 2018, 30, 1801459.

    Google Scholar 

  37. Gao, R. S.; Tang, J.; Zhang, K.; Ozawa, K.; Qin, L. C. A sandwichlike silicon-carbon composite prepared by surface-polymerization for rapid lithium-ion storage. Nano Energy 2020, 78, 105341.

    CAS  Google Scholar 

  38. Ren, W. F.; Wang, Y. H.; Zhang, Z. L.; Tan, Q. Q.; Zhong, Z. Y.; Su, F. B. Carbon-coated porous silicon composites as high performance Li-ion battery anode materials: Can the production process be cheaper and greener? J. Mater. Chem. A 2016, 4, 552–560.

    CAS  Google Scholar 

  39. Lu, S. J.; Wang, Z. T.; Zhang, X. H.; He, Z. J.; Tong, H.; Li, Y. J.; Zheng, J. C. In situ-formed hollow cobalt sulfide wrapped by reduced graphene oxide as an anode for high-performance lithiumion batteries. ACS Appl. Mater. Interfaces 2020, 12, 2671–2678.

    CAS  PubMed  Google Scholar 

  40. Yang, X. M.; Rogach, A. L. Electrochemical techniques in battery research: A tutorial for nonelectrochemists. Adv. Energy Mater. 2019, 9, 1900747.

    Google Scholar 

  41. Wang, F.; Wang, B.; Ruan, T. T.; Gao, T. T.; Song, R. S.; Jin, F.; Zhou, Y.; Wang, D. L.; Liu, H. K.; Dou, S. X. Construction of structure-tunable Si@void@C anode materials for lithium-ion batteries through controlling the growth kinetics of resin. ACS Nano 2019, 13, 12219–12229.

    CAS  PubMed  Google Scholar 

  42. Kaspar, J.; Graczyk-Zajac, M.; Riedel, R. Determination of the chemical diffusion coefficient of Li-ions in carbon-rich silicon oxycarbide anodes by electro-analytical methods. Electrochim. Acta 2014, 115, 665–670.

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 52202371), the Natural Science Foundation of Shandong Province (No. ZR2020QE066), Opening Project of State Key Laboratory of Advanced Technology for Float Glass (No. 2020KF08), and SDUT&Zibo City Integration Development Project (No. 2021SNPT0045).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Wang or Guangwu Wen.

Electronic Supplementary Material

12274_2023_6113_MOESM1_ESM.pdf

3D printed silicon-based micro-lattices with ultrahigh areal/gravimetric capacities and robust structural stability for lithium-ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Wang, D., Li, Y. et al. 3D printed silicon-based micro-lattices with ultrahigh areal/gravimetric capacities and robust structural stability for lithium-ion batteries. Nano Res. 17, 2693–2703 (2024). https://doi.org/10.1007/s12274-023-6113-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6113-0

Keywords

Navigation