Skip to main content
Log in

Structural, electrical, and photocatalytic investigations of PANI/ZnO nanocomposites

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In recent days, conducting polymers with inorganic metal oxide has provoked a great deal of interest towards electrochemical and photocatalytic applications. In this regard, the organic-inorganic polyaniline (PANI)/ZnO nanocomposite with different weight percentages (1 and 10) of ZnO in the PANI matrix was synthesized through in situ polymerization approach. The structural, optical, electrical, and photocatalytic properties of the synthesized PANI/ZnO nanocomposites were systematically studied. Interestingly, PANI/ZnO (10 wt%) composition possesses excellent conductivity behavior (ρ = 4.35 × 10−3 S cm−1) and displayed maximum photocatalytic activity of K = 14.77 × 10−3 min−1 for the degradation of methylene blue (MB) in aqueous solution (10 ppm) under natural sunlight. The superiority of both the conductivity and photocatalytic efficiencies of PANI/ZnO (10 wt%) nanocomposites might be due to synergistic interaction between PANI and ZnO and high photogenerated charge carrier separation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wegner G (1981) Polymers with metal-like conductivity-a review of their synthesis, structure and properties. Angew Chem Int Ed 20:361–381. https://doi.org/10.1002/anie.198103611

    Article  Google Scholar 

  2. Micaroni L, Nart FC, H IA (2002) Considerations about the electrochemical estimation of the ionization potential of conducting polymers. J Solid State Electrochem 7:55–59. https://doi.org/10.1007/s10008-002-0289-0

    Article  CAS  Google Scholar 

  3. Deshpande PP, Jadhav NG, Gelling VJ, Sazou D (2014) Conducting polymers for corrosion protection : a review. J Coat Technol Res 11:473–494. https://doi.org/10.1007/s11998-014-9586-7

    Article  CAS  Google Scholar 

  4. Khomenko V, Frackowiak E, Barsukov V, Béguin F (2006) Development of supercapacitors based on conducting polymers. In: New carbon based materials electrochemical energy storage systems, 229, 41–50. https://doi.org/10.1007/1-4020-4812-2_4

  5. Wang H, Wen H, Hu B, Fei G, Shen Y, Sun L, Yang D (2017) Facile approach to fabricate waterborne polyaniline nanocomposites with environmental benignity and high physical properties. Sci Rep 7:1–12. https://doi.org/10.1038/srep43694

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ponnamma D, Sadasivuni KK, Al-Maadeed MAA, Thomas S (2019) Developing polyaniline filled isoprene composite fibers by electrospinning: effect of filler concentration on the morphology and glass transition. Polym Sci - Ser A 61:194–202. https://doi.org/10.1134/S0965545X19020093

    Article  Google Scholar 

  7. Bhadra J, Al-Thani N (2019) Advances in blends preparation based on electrically conducting polymer. Emergent Mater 2:67–77. https://doi.org/10.1007/s42247-019-00027-7

    Article  CAS  Google Scholar 

  8. Jlassi K, Radwan AB, Sadasivuni KK, Mrlik M, Abdullah AM, Chehimi MM, Krupa I (2018) Anti-corrosive and oil sensitive coatings based on epoxy/polyaniline/magnetite-clay composites through diazonium interfacial chemistry. Sci Rep 8:1–13. https://doi.org/10.1038/s41598-018-31508-0

    Article  CAS  Google Scholar 

  9. Ponnamma D, Sadasivuni KK, Strankowski M, Kasak P, Krupa I, AlMaadeed MAA (2016) Eco-friendly electromagnetic interference shielding materials from flexible reduced graphene oxide filled polycaprolactone/polyaniline nanocomposites. Polym-Plast Technol Eng 55:920–928. https://doi.org/10.1080/03602559.2015.1132435

    Article  CAS  Google Scholar 

  10. Sadasivuni KK, Ponnamma D, Kasak P, Krupa I, Ali S A al-Maadeed M (2014) Designing dual phase sensing materials from polyaniline filled styrene-isoprene-styrene composites. Mater Chem Phys 147:1029–1036. https://doi.org/10.1016/j.matchemphys.2014.06.055

    Article  CAS  Google Scholar 

  11. Elango M, Deepa M, Subramanian R, Saraswathy G (2018) Synthesis, structural characterization and antimicrobial activities of polyindole stabilized Ag-Co3O4nanocomposite by reflux condensation method. Mater Chem Phys 216:305–315. https://doi.org/10.1016/j.matchemphys.2018.05.049

    Article  CAS  Google Scholar 

  12. Vijayalakshmi S, Kumar E, Nithya S (2020) Investigation on polyaniline with manganese dioxide nanostructure by using an in situ oxidative polymerization method. Ionics (Kiel) 26:839–848. https://doi.org/10.1007/s11581-019-03207-x

    Article  CAS  Google Scholar 

  13. Salem MA, Al-ghonemiy AF, Zaki AB (2009) Applied catalysis B: environmental photocatalytic degradation of allura red and quinoline yellow with polyaniline/TiO 2 nanocomposite. Appl Catal B Environ 91:59–66. https://doi.org/10.1016/j.apcatb.2009.05.027

    Article  CAS  Google Scholar 

  14. Haspulat Taymaz B, Eskizeybek V, Kamış H (2021) A novel polyaniline/NiO nanocomposite as a UV and visible-light photocatalyst for complete degradation of the model dyes and the real textile wastewater. Environ Sci Pollut Res 28:6700–6718. https://doi.org/10.1007/s11356-020-10956-0

    Article  CAS  Google Scholar 

  15. de Souza VS, da Frota HO, Sanches EA (2018) Polyaniline-CuO hybrid nanocomposite with enhanced electrical conductivity. J Mol Struct 1153:20–27. https://doi.org/10.1016/j.molstruc.2017.09.084

    Article  CAS  Google Scholar 

  16. Gülce H, Eskizeybek V, Haspulat B, Sarı F, Gülce A, Avcı A (2013) Preparation of a new polyaniline/CdO nanocomposite and investigation of its photocatalytic activity: comparative study under UV light and natural sunlight irradiation. Ind Eng Chem Res 52:10924–10934. https://doi.org/10.1021/ie401389e

    Article  CAS  Google Scholar 

  17. Dutta K, De SK (2007) Optical and electrical characterization of polyaniline-silicon dioxide nanocomposite. Phys Lett Sect A Gen At Solid State Phys 361:141–145. https://doi.org/10.1016/j.physleta.2006.09.025

    Article  CAS  Google Scholar 

  18. Yang C, Dong W, Cui G, Zhao Y, Shi X, Xia X, Tang B, Wang W (2017) Enhanced photocatalytic activity of PANI/TiO2 due to their photosensitization-synergetic effect. Electrochim Acta 247:486–495. https://doi.org/10.1016/j.electacta.2017.07.037

    Article  CAS  Google Scholar 

  19. Liu CH, Yiu WC, Au FCK, Ding JX, Lee CS, Lee ST (2003) Electrical properties of zinc oxide nanowires and intramolecular p – n junctions Electrical properties of zinc oxide nanowires and intramolecular p – n junctions. Appl Phys Lett 83:3168–3170. https://doi.org/10.1063/1.1609232

    Article  CAS  Google Scholar 

  20. Ganeshbabu M, Kannan N, Venkatesh PS, Paulraj G, Jeganathan K, MubarakAli D (2020) Synthesis and characterization of BiVO4 nanoparticles for environmental applications. RSC Adv 10:18315–18322. https://doi.org/10.1039/d0ra01065k

    Article  CAS  Google Scholar 

  21. Vijayalakshmi S, Kumar E, Venkatesh PS, Raja A (2019) Preparation of zirconium oxide with polyaniline nanocatalyst for the decomposition of pharmaceutical industrial wastewater. Ionics (Kiel) 26:1507–1513. https://doi.org/10.1007/s11581-019-03323-8

    Article  CAS  Google Scholar 

  22. Paulraj G, Venkatesh PS, Dharmaraj P, Gopalakrishnan S, Jeganathan K (2020) Stable and highly efficient MoS2/Si NWs hybrid heterostructure for photoelectrocatalytic hydrogen evolution reaction. Int J Hydrog Energy 45:1793–1801. https://doi.org/10.1016/j.ijhydene.2019.11.051

    Article  CAS  Google Scholar 

  23. Cruz GJ, Morales J, Castillo-ortega MM, Olayo R (1997) Synthesis of polyaniline films by plasma polymerization. Synth Met 88:213–218. https://doi.org/10.1016/s0379-6779(97)03853-8

    Article  CAS  Google Scholar 

  24. Gilja V, Vrban I, Mandi V et al (2018) Preparation of a PANI/ZnO composite for efficient photocatalytic degradation of acid blue. Polymers (Basel) 10:1–17. https://doi.org/10.3390/polym10090940

    Article  CAS  Google Scholar 

  25. Rao PS, Subrahmanya S, Sathyanarayana DN (2002) Inverse emulsion polymerization : a new route for the synthesis of conducting polyaniline. Synth Met 128:311–316. https://doi.org/10.1016/s0379-6779(02)00016-4

    Article  CAS  Google Scholar 

  26. Padmanabhan SC, Ledwith D, Pillai SC, McCormack DE, Kelly JM (2009) Microwave-assisted synthesis of ZnO micro-javelins †. J Mater Chem 19:9250–9259. https://doi.org/10.1039/b912537j

    Article  CAS  Google Scholar 

  27. Anandhababu G, Ravi G (2018) Facile synthesis of quantum sized Co3O4 nanostructures and their magnetic properties. Nano-Structures and Nano-Objects 15:1–9. https://doi.org/10.1016/j.nanoso.2018.03.005

    Article  CAS  Google Scholar 

  28. Babu GA, Ravi G (2015) Quantification of ferromagnetism in metal doped NiO nanostructures. Mater Lett 161:149–152. https://doi.org/10.1016/j.matlet.2015.08.073

    Article  CAS  Google Scholar 

  29. Selvaraju K, Babu GA (2019) Assembly of favorable 2D Co-N4-based polymer nanosheets for proficient oxygen reduction reaction. Ionics (Kiel) 25:5939–5947. https://doi.org/10.1007/s11581-019-03164-5

    Article  CAS  Google Scholar 

  30. Eskizeybek V, Sari F, Gulce H, Ahmet Gulce AA (2012) Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl Catal B Environ 119:197–206. https://doi.org/10.1016/j.apcatb.2012.02.034

    Article  CAS  Google Scholar 

  31. Shen S, Chen J, Cai L, Ren F, Guo L (2015) A strategy of engineering impurity distribution in metal oxide nanostructures for photoelectrochemical water splitting. J Mater 1:134–145. https://doi.org/10.1016/j.jmat.2015.02.003

    Article  Google Scholar 

  32. Hasoon SA, Abdul-Hadi SA (2018) Optical, structural and electrical properties of electrochemical synthesis of thin film of polyaniline. Baghdad Sci J 15:73–80. https://doi.org/10.21123/bsj.2018.15.1.0073

    Article  Google Scholar 

  33. Online VA (2014) mimics for sensitive hydrogen peroxide detection †. ChemComm 1:3030–3032. https://doi.org/10.1039/c4cc00328d

    Article  CAS  Google Scholar 

  34. Trchová M, Stejskal J (2011) Polyaniline: the infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report)*. Pure Appl Chem 83:1803–1817. https://doi.org/10.1351/PAC-REP-10-02-01

    Article  CAS  Google Scholar 

  35. Paik P, Manda R, Amgoth C, Santhosh Kumar K (2014) Polyaniline nanotubes with rectangular-hollow-core and its self-assembled surface decoration: high conductivity and dielectric properties. RSC Adv 4:12342–12352. https://doi.org/10.1039/c3ra47155a

    Article  CAS  Google Scholar 

  36. Prasanna BP, Avadhani DN, Muralidhara HB et al (2016) Synthesis of polyaniline/ZrO2 nanocomposites and their performance in AC conductivity and electrochemical supercapacitance. Bull Mater Sci 39:667–675. https://doi.org/10.1007/s12034-016-1196-9

    Article  CAS  Google Scholar 

  37. Reza M, Sha M, Sattari A, Kargar M (2018) MnO2/Cr2O3/PANI nanocomposites prepared by in situ oxidation polymerization method: optical and electrical behaviors. J Appl Polym Sci 136:1–7. https://doi.org/10.1002/app.47219

    Article  CAS  Google Scholar 

  38. Mo T, Wang H, Chen S, Yeh Y (2008) Synthesis and dielectric properties of polyaniline/titanium dioxide nanocomposites Synthesis and dielectric properties of polyaniline/titanium dioxide nanocomposites. Ceram Int 34:1767–1771. https://doi.org/10.1016/j.ceramint.2007.06.002

    Article  CAS  Google Scholar 

  39. Islam S, Lakshmi GBVS, Siddiqui AM, Husain M, Zulfequar M (2013) Synthesis, electrical conductivity, and dielectric behavior of polyaniline/V2O5 composites. Int J Polym Sci 2013:1–7

    Article  Google Scholar 

  40. Quillard S, Louarn G, Lefrant S (1994) Vibrational analysis of polyaniline: a comparative study of leucoemeraldine , emeraldine , and pernigraniline bases. Phys Rev B 50:12496–12508. https://doi.org/10.1103/PhysRevB.50.12496

    Article  CAS  Google Scholar 

  41. Makhlouf SA (2008) Electrical properties of NiO films obtained by high-temperature oxidation of nickel. Thin Solid Films 516:3112–3116. https://doi.org/10.1016/j.tsf.2007.07.213

    Article  CAS  Google Scholar 

  42. Nekooie R, Shamspur T, Mostafavi A (2021) Novel CuO/TiO2/PANI nanocomposite: preparation and photocatalytic investigation for chlorpyrifos degradation in water under visible light irradiation. J Photochem Photobiol A Chem 407:113038. https://doi.org/10.1016/j.jphotochem.2020.113038

    Article  CAS  Google Scholar 

  43. Azzam EMS, Fathy NA, El-khouly SM, Sami RM (2019) The photocatalytic degradation of methylene blue dye using fabricated CNTs/TiO2/AgNPs/surfactant nanocomposites. J Water Process Eng 28:311–321. https://doi.org/10.1016/j.jwpe.2019.02.016

    Article  Google Scholar 

  44. Sophia PJ, Balaji D, James T et al (2020) Solar induced photocatalytic degradation of methylene blue by CdS/Ag2O nanocomposites. ChemistrySelect 5:4125–4135. https://doi.org/10.1002/slct.202000475

    Article  CAS  Google Scholar 

  45. Soltani N, Saion E, Hussein MZ, Erfani M, Abedini A, Bahmanrokh G, Navasery M, Vaziri P (2012) Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles. Int J Mol Sci 13:12242–12258. https://doi.org/10.3390/ijms131012242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kusdianto K, Kusuma TC, Hudandini M, Widiyastuti W, Madhania SS, Machmudah TN, W S (2019) Characterizations of Ag doped ZnO particles via flame pyrolysis method for degradation of methylene blue characterizations of Ag doped ZnO particles via flame pyrolysis method for degradation of methylene blue. IOP Conf Ser Mater Sci Eng 673:1–9. https://doi.org/10.1088/1757-899X/673/1/012012

    Article  Google Scholar 

  47. Jiang T, Wang Y, Meng D, Wu X, Wang J, Chen J (2014) Controllable fabrication of CuO nanostructure by hydrothermal method and its properties. Appl Surf Sci 311:602–608. https://doi.org/10.1016/j.apsusc.2014.05.116

    Article  CAS  Google Scholar 

  48. Wang Y, Jiang T, Meng D, Yang J, Li Y, Ma Q, Han J (2014) Fabrication of nanostructured CuO films by electrodeposition and their photocatalytic properties. Appl Surf Sci 317:414–421. https://doi.org/10.1016/j.apsusc.2014.08.144

    Article  CAS  Google Scholar 

Download references

Funding

Dr E. Kumar thanks the Tamil Nadu Open University. PSV thanks the Department of Science and Technology – Science and Engineering Research Board (DST-SERB, YSS/2015/000632) and University Grants Commission (UGC–contract no. MRP-7036/16SERO/UGC) for their financial assistance. PSV also would like to thank the Management of the College for the financial support to establish a laboratory for Nanomaterials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kumar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayalakshmi, S., Kumar, E., Ganeshbabu, M. et al. Structural, electrical, and photocatalytic investigations of PANI/ZnO nanocomposites. Ionics 27, 2967–2977 (2021). https://doi.org/10.1007/s11581-021-04041-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04041-w

Keywords

Navigation