Skip to main content
Log in

RuO2/TiO2/MXene with multi-heterojunctions coating on carbon cloth for high-activity chlorine evolution reaction at large current densities

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The chlorine evolution reaction (CER) is a crucial step in the production of chlorine gas and active chlorine by chlor-alkali electrolysis. Currently, the endeavor to fabricate electrodes capable of yielding high current density at minimal overpotential remains a central challenge in advancing the realm of chlorine evolution reactions. Here, we grow TiO2 and RuO2 on MXene@carbon cloth (CC) through the favorable affinity and induced deposition effect between the surface functional groups of MXene and the metal. A self-supported electrode (RuTiO2/MXene@CC) with strong binding at the electrocatalyst–support interface and weak adhesion at electrocatalyst–bubble interface is constructed. The RuTiO2/MXene@CC can reduce the electron density of RuO2 by regulating the electron redistribution at the heterogeneous interface, thus enhancing the adsorption of Cl. RuTiO2/MXene@CC could achieve a high current density of 1000 mA·cm2 at a small overpotential of 220 mV, superior to commercial dimensionally stable anodes (DSA). This study provides a new strategy for constructing efficient CER catalysts at high current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qiu, L. S.; Zhang, F.; Qian, Y.; Han, W. W.; He, Y.; Feng, X. D.; Jin, J. X.; Gu, Y. P.; Hao, S. Y.; Zhang, X. W. Europium doped RuO2@TP enhanced chlorine evolution reaction performance by charge redistribution. Chem. Eng. J. 2023, 464, 142623.

    Article  CAS  Google Scholar 

  2. Liu, Y. Y.; Li, C.; Tan, C. H.; Pei, Z. X.; Yang, T.; Zhang, S. Z.; Huang, Q. W.; Wang, Y. H.; Zhou, Z.; Liao, X. Z. et al. Electrosynthesis of chlorine from seawater-like solution through single-atom catalysts. Nat. Commun. 2023, 14, 2475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cheng, W. T.; Liu, Y. L.; Wu, L.; Chen, R. S.; Wang, J. X.; Chang, S.; Ma, F.; Li, Y.; Ni, H. W. RuO2/IrO2 nanoparticles decorated TiO2 nanotube arrays for improved activity towards chlorine evolution reaction. Catal. Today 2022, 400–401, 26–34

    Google Scholar 

  4. Hu, M. C.; Yu, T. Q.; Tan, K. X.; Zhou, A. C.; Luo, L.; Yin, S. B. Ultralow Ru loading RuO2−TiO2 with strong oxide-support interaction for efficient chlorine evolution and ammonia-nitrogen-elimination. Chem. Eng. J. 2023, 465, 143001.

    Article  CAS  Google Scholar 

  5. Deng, Z. L.; Xu, S. Y.; Liu, C. H.; Zhang, X. Q.; Li, M. F.; Zhao, Z. P. Stability of dimensionally stable anode for chlorine evolution reaction. Nano Res. in press, https://doi.org/10.1007/s12274-023-5965-7.

  6. Khatun, S.; Roy, P. Mott–Schottky heterojunction of Se/NiSe2 as bifunctional electrocatalyst for energy efficient hydrogen production via urea assisted seawater electrolysis. J. Colloid Interface Sci. 2023, 630, 844–854.

    Article  CAS  PubMed  Google Scholar 

  7. Zhu, X. L.; Wang, P.; Wang, Z. Y.; Liu, Y. Y.; Zheng, Z. K.; Zhang, Q. Q.; Zhang, X. Y.; Dai, Y.; Whangbo, M. H.; Huang, B. B. Co3O4 nanobelt arrays assembled with ultrathin nanosheets as highly efficient and stable electrocatalysts for the chlorine evolution reaction. J. Mater. Chem. A 2018, 6, 12718–12723.

    Article  CAS  Google Scholar 

  8. Wu, S.; Zhu, Y. C.; Yang, G. S.; Zhou, H.; Li, R. Q.; Chen, S.; Li, H. M.; Li, L. M.; Fontaine, O.; Deng, J. Take full advantage of hazardous electrochemical chlorine erosion to ultrafast produce superior NiFe oxygen evolution reaction electrode. Chem. Eng. J. 2022, 446, 136833.

    Article  CAS  Google Scholar 

  9. Qu, H. Q.; Li, B.; Ma, Y. R.; Xiao, Z. Y.; Lv, Z. G.; Li, Z. J.; Li, W.; Wang, L. Defect-enriched hollow porous carbon nanocages enable highly efficient chlorine evolution reaction. Adv. Mater. 2023, 35, 2301359.

    Article  CAS  Google Scholar 

  10. Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

    Article  CAS  Google Scholar 

  11. Liu, H. M.; Xie, R. K.; Luo, Y. T.; Cui, Z. C.; Yu, Q. M.; Gao, Z. Q.; Zhang, Z. Y.; Yang, F. N.; Kang, X.; Ge, S. Y. et al. Dual interfacial engineering of a Chevrel phase electrode material for stable hydrogen evolution at 2500 mA·cm2. Nat. Commun. 2022, 13, 6382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, S.; Zhao, R.; Zheng, T.; Fang, Y.; Wang, W. J.; Xue, W. D. Metal-organic framework-derived self-supporting metal boride for efficient electrocatalytic oxygen evolution reaction. J. Colloid Interface Sci. 2022, 618, 34–43.

    Article  CAS  PubMed  Google Scholar 

  13. Zhu, C. R.; Wang, A. L.; Xiao, W.; Chao, D. L.; Zhang, X.; Tiep, N. H.; Chen, S.; Kang, J.; Wang, X.; Ding, J. et al. In situ grown epitaxial heterojunction exhibits high-performance electrocatalytic water splitting. Adv. Mater. 2018, 30, 1705516

    Article  Google Scholar 

  14. Yang, Y. M.; Ji, Y. J.; Li, G. Y.; Li, Y. Y.; Jia, B. H.; Yan, J. Q.; Ma, T. Y.; Liu, S. Z. IrOx@In2O3 heterojunction from individually crystallized oxides for weak-light-promoted electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2021, 60, 26790–26797.

    Article  CAS  Google Scholar 

  15. Qian, X.; Wei, Y. J.; Sun, M. J.; Han, Y.; Zhang, X. L.; Tian, J.; Shao, M. H. Heterostructuring 2D TiO2 nanosheets in situ grown on Ti3C2Tx MXene to improve the electrocatalytic nitrogen reduction. Chin. J. Catal. 2022, 43, 1937–1944.

    Article  CAS  Google Scholar 

  16. Li, W. X.; Sun, Z. L.; Ge, R. Y.; Li, J. C.; Li, Y. R.; Cairney, J. M.; Zheng, R. K.; Li, Y.; Li, S. A.; Li, Q. et al. Nanoarchitectonics of La-doped Ni3S2/MoS2 hetetostructural electrocatalysts for water electrolysis. Small Struct. 2023, 4, 2300175.

    Article  CAS  Google Scholar 

  17. Ren, X.; Shi, J. Y.; Duan, R. H.; Di, J.; Xue, C.; Luo, X.; Liu, Q.; Xia, M. Y.; Lin, B.; Tang, W. Construction of high-efficiency CoS@Nb2O5 heterojunctions accelerating charge transfer for boosting photocatalytic hydrogen evolution. Chin. Chem. Lett. 2022, 33, 4700–4704.

    Article  CAS  Google Scholar 

  18. Yu, M. Z.; Wang, Z. Y.; Liu, J. S.; Sun, F.; Yang, P. J.; Qiu, J. S. A hierarchically porous and hydrophilic 3D nickel-iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities. Nano Energy 2019, 63, 103880.

    Article  CAS  Google Scholar 

  19. Khan, U.; Nairan, A.; Gao, J. K.; Zhang, Q. C. Current progress in 2D metal-organic frameworks for electrocatalysis. Small Struct. 2023, 4, 2200109.

    Article  CAS  Google Scholar 

  20. Wang, L.; Gong, N.; Zhou, Z.; Zhang, Q. C.; Peng, W. C.; Li, Y.; Zhang, F. B.; Fan, X. B. A MOF derived hierarchically porous 3D N−CoPx/Ni2P electrode for accelerating hydrogen evolution at high current densities. Chin. J. Catal. 2022, 43, 1176–1183.

    Article  CAS  Google Scholar 

  21. Huang, C. Y.; Xia, Z. H.; Wang, J.; Zhang, J.; Zhao, C. F.; Zou, X. L.; Mu, S. C.; Zhang, J. J.; Lu, X. G.; Fan, H. J. et al. Highly efficient and stable electrocatalyst for hydrogen evolution by molybdenum doped Ni−Co phosphide nanoneedles at high current density. Nano Res. 2023, 23, 5892–5897

    Google Scholar 

  22. Zhu, J. W.; Chi, J. Q.; Cui, T.; Guo, L. L.; Wu, S. Q.; Li, B.; Lai, J. P.; Wang, L. F doping and P vacancy engineered FeCoP nanosheets for efficient and stable seawater electrolysis at large current density. Appl. Catal. B: Environ. 2023, 328, 122487.

    Article  CAS  Google Scholar 

  23. Senthil Raja, D.; Chuah, X. F.; Lu, S. Y. In situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities. Adv. Energy Mater. 2018, 8, 1801065

    Article  Google Scholar 

  24. Zhang, Y. S.; Liu, J. X.; Qian, K.; Jia, A. P.; Li, D.; Shi, L.; Hu, J.; Zhu, J. F.; Huang, W. X. Structure sensitivity of Au−TiO2 strong metal-support interactions. Angew. Chem., Int. Ed. 2021, 60, 12074–12081.

    Article  CAS  Google Scholar 

  25. Hu, X. H.; Pan, J. C.; Wang, D.; Zhong, W.; Wang, H. Y.; Wang, L. Y. Quantum-chemical study on the catalytic activity of TinRumO2 (110) surfaces on chlorine evolution. Chin. Chem. Lett. 2015, 26, 595–598.

    Article  CAS  Google Scholar 

  26. Exner, K. S.; Anton, J.; Jacob, T.; Over, H. Controlling selectivity in the chlorine evolution reaction over RuO2-based catalysts. Angew. Chem., Int. Ed. 2014, 53, 11032–11035.

    Article  CAS  Google Scholar 

  27. Karlsson, R. K. B.; Cornell, A. Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chem. Rev. 2016, 116, 2982–3028.

    Article  CAS  PubMed  Google Scholar 

  28. Kong, A. Q.; Peng, M.; Gu, H. Z.; Zhao, S. C.; Lv, Y.; Liu, M. H.; Sun, Y. W.; Dai, S. D.; Fu, Y.; Zhang, J. L. et al. Synergetic control of Ru/MXene 3D electrode with superhydrophilicity and superaerophobicity for overall water splitting. Chem. Eng. J. 2021, 426, 131234.

    Article  CAS  Google Scholar 

  29. Xu, Y. J.; Wang, F.; Lei, S. L.; Wei, Y.; Zhao, D.; Gao, Y. H.; Ma, X.; Li, S. J.; Chang, S. Q.; Wang, M. Q. et al. In situ grown two-dimensional TiO2/Ti3CN MXene heterojunction rich in Ti3+ species for highly efficient photoelectrocatalytic CO2 reduction. Chem. Eng. J. 2023, 452, 139392.

    Article  CAS  Google Scholar 

  30. Bai, X.; Guan, J. Q. Applications of MXene-based single-atom catalysts. Small Struct. 2023, 4, 2200354.

    Article  CAS  Google Scholar 

  31. Xu, T. X.; Wang, J. P.; Cong, Y.; Jiang, S.; Zhang, Q.; Zhu, H.; Li, Y. J.; Li, X. K. Ternary BiOBr/TiO2/Ti3C2Tx MXene nanocomposites with heterojunction structure and improved photocatalysis performance. Chin. Chem. Lett. 2020, 31, 1022–1025.

    Article  CAS  Google Scholar 

  32. Gou, Z. L.; Qu, H. Q.; Liu, H. F.; Ma, Y. R.; Zong, L. B.; Li, B.; Xie, C. X.; Li, Z. J.; Li, W.; Wang, L. Coupling of N-doped mesoporous carbon and N−Ti3C2 in 2D sandwiched heterostructure for enhanced oxygen electroreduction. Small 2022, 18, 2106581.

    Article  CAS  Google Scholar 

  33. Jiang, Q.; Kurra, N.; Alhabeb, M.; Gogotsi, Y.; Alshareef, H. N. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 2018, 8, 1703043.

    Article  Google Scholar 

  34. Li, H. P.; Li, X. R.; Liang, J. J.; Chen, Y. S. Hydrous RuO2-decorated MXene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance. Adv. Energy Mater. 2019, 9, 1803987.

    Article  Google Scholar 

  35. Xu, W.; Xie, H. J.; Cao, F. Y.; Ran, S. S.; Duan, Y. H.; Li, B.; Wang, L. Enhanced interaction between Ru nanoparticles and N, C-modified mesoporous TiO2 for efficient electrocatalytic hydrogen evolution at all pH values. J. Mater. Chem. A 2022, 10, 23751–23759.

    Article  CAS  Google Scholar 

  36. Li, M.; Li, X. L.; Qin, G. F.; Luo, K.; Lu, J.; Li, Y. B.; Liang, G. J.; Huang, Z. D.; Zhou, J.; Hultman, L. et al. Halogenated Ti3C2 MXenes with electrochemically active terminals for highperformance zinc ion batteries. ACS Nano 2021, 15, 1077–1085.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, F.; Ma, X. D.; Zou, P. J.; Wang, G. X.; Xiong, Y.; Liu, Y.; Ren, F. Z.; Xiong, X. H. Nitrogen-doped carbon decorated TiO2/Ti3C2Tx MXene composites as anode material for high-performance sodium-ion batteries. Surf. Coat. Technol. 2021, 422, 127568.

    Article  CAS  Google Scholar 

  38. Lu, Y.; Fan, D. Q.; Chen, Z. P.; Xiao, W. P.; Cao, C. C.; Yang, X. F. Anchoring Co3O4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution. Sci. Bull. 2020, 65, 460–466.

    Article  CAS  Google Scholar 

  39. Arole, K.; Blivin, J. W.; Saha, S.; Holta, D. E.; Zhao, X. F.; Sarmah, A.; Cao, H. X.; Radovic, M.; Lutkenhaus, J. L.; Green, M. J. Water-dispersible Ti3C2Tz MXene nanosheets by molten salt etching. iScience 2021, 24, 103403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun, S. C.; Jiang, H.; Chen, Z. Y.; Chen, Q.; Ma, M. Y.; Zhen, L.; Song, B.; Xu, C. Y. Bifunctional WC-supported RuO2 nanoparticles for robust water splitting in acidic media. Angew. Chem., Int. Ed. 2022, 61, e202202519.

    Article  CAS  Google Scholar 

  41. Du, Y. M.; Li, B.; Xu, G. R.; Wang, L. Recent advances in interface engineering strategy for highly-efficient electrocatalytic water splitting. InfoMat 2023, 5, e12377.

    Article  CAS  Google Scholar 

  42. Zhang, Z. Q.; Wang, H. B.; Li, Y. X.; Xie, M. G.; Li, C. G.; Lu, H. Y.; Peng, Y.; Shi, Z. Confined pyrolysis synthesis of well-dispersed cobalt copper bimetallic three-dimensional N-doped carbon framework as efficient water splitting electrocatalyst. Chem. Res. Chin. Univ. 2022, 38, 750–757.

    Article  Google Scholar 

  43. Jiang, M.; Wang, H.; Li, Y. J.; Zhang, H. C.; Zhang, G. X.; Lu, Z. Y.; Sun, X. M.; Jiang, L. Superaerophobic RuO2 - based nanostructured electrode for high-performance chlorine evolution reaction. Small 2017, 13, 1602240.

    Article  Google Scholar 

  44. Hou, P.; Li, D.; Yang, N. L.; Wan, J. W.; Zhang, C. H.; Zhang, X. Q.; Jiang, H. Y.; Zhang, Q. H.; Gu, L.; Wang, D. Delicate control on the shell structure of hollow spheres enables tunable mass transport in water splitting. Angew. Chem., Int. Ed. 2021, 60, 6926–6931.

    Article  CAS  Google Scholar 

  45. Zou, Y.; Kazemi, S. A.; Shi, G.; Liu, J. X.; Yang, Y. W.; Bedford, N. M.; Fan, K. C.; Xu, Y. M.; Fu, H. Q.; Dong, M. Y. et al. Ruthenium single-atom modulated Ti3C2Tx MXene for efficient alkaline electrocatalytic hydrogen production. EcoMat 2023, 5, e12274.

    Article  CAS  Google Scholar 

  46. Yin, H. J.; Dou, Y. H.; Chen, S.; Zhu, Z. J.; Liu, P. R.; Zhao, H. J. 2D electrocatalysts for converting earth-abundant simple molecules into value-added commodity chemicals: Recent progress and perspectives. Adv. Mater. 2020, 32, 1904870

    Article  CAS  Google Scholar 

  47. Ji, J. P.; Liu, J. X.; Shi, L.; Guo, S. Q.; Cheng, N. Y.; Liu, P. R.; Gu, Y. T.; Yin, H. J.; Zhang, H. M.; Zhao, H. J. Ruthenium oxide clusters immobilized in cationic vacancies of 2D titanium oxide for chlorine evolution reaction. Small Struct., in press, https://doi.org/10.1002/sstr.202300240.

  48. Nguyen, T. D.; Scherer, G. G.; Xu, Z. J. A facile synthesis of size-controllable IrO2 and RuO2 nanoparticles for the oxygen evolution reaction. Electrocatalysis 2016, 7, 420–427.

    Article  CAS  Google Scholar 

  49. Wang, Y. H.; Liu, Y. Y.; Wiley, D.; Zhao, S. L.; Tang, Z. Y. Recent advances in electrocatalytic chloride oxidation for chlorine gas production. J. Mater. Chem. A 2021, 9, 18974–18993.

    Article  CAS  Google Scholar 

  50. Exner, K. S.; Anton, J.; Jacob, T.; Over, H. Full kinetics from first principles of the chlorine evolution reaction over a RuO2 (110) model electrode. Angew. Chem., Int. Ed. 2016, 55, 7501–7504.

    Article  CAS  Google Scholar 

  51. Lim, T.; Kim, J. H.; Kim, J.; Baek, D. S.; Shin, T. J.; Jeong, H. Y.; Lee, K. S.; Exner, K. S.; Joo, S. H. General efficacy of atomically dispersed Pt catalysts for the chlorine evolution reaction: Potential-dependent switching of the kinetics and mechanism. ACS Catal. 2021, 11, 12232–12246.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21971132, 52072197, and 52272222), Youth Innovation and Technology Foundation of Shandong Higher Education Institutions, China (No. 2019KJC004), Major Scientific and Technological Innovation Project (No. 2019JZZY020405), Major Basic Research Program of Natural Science Foundation of Shandong Province (No. ZR2020ZD09), Taishan Scholar Young Talent Program (No. tsqn201909114), the 111 Project of China (No. D20017), Shandong Province Double-Hundred Talent Plan (No. WST2020003), and State Key Laboratory of Heavy Oil Processing (No. SKLHOP202202006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Li or Lei Wang.

Electronic Supplementary Material

12274_2024_6419_MOESM1_ESM.pdf

RuO2/TiO2/MXene with multi-heterojunctions coating on carbon cloth for high-activity chlorine evolution reaction at large current densities

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Wei, L., Cai, C. et al. RuO2/TiO2/MXene with multi-heterojunctions coating on carbon cloth for high-activity chlorine evolution reaction at large current densities. Nano Res. 17, 4764–4772 (2024). https://doi.org/10.1007/s12274-024-6419-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6419-6

Keywords

Navigation