Skip to main content

Advertisement

Log in

Improved electrochemical properties of MgMn2O4 cathode materials by Sr doping for Mg ion cells

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Magnesium possesses numerous great characteristics that make it attractive as an electrode material for rechargeable batteries. Magnesium is available in abundance, ease of handling, low toxicity, and environmental friendly. Due to its advantages, magnesium ion battery may be considered as an alternative to lithium in the future. In the present work, the improvement electrochemical properties of magnesium-based cathode material, MgMn2O4, were done by adding strontium (Sr) as dopant. These materials were synthesized by self-propagating combustion method using citric acid as a reducing agent. The precursors obtained were annealed at temperatures of 700 °C and 800 °C for 24 h. The thermal properties, structure, and surface morphology of the prepared cathode material samples were characterized using thermogravimetric analysis (TGA), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, electrochemical impedance spectroscopy (EIS), and Brunauer–Emmett–Teller theory (BET). Linear sweep voltammetry (LSV) and cyclic voltammetry (CV) were performed to determine electrochemical stability and properties of the prepared samples using two different electrolytes containing magnesium trifluoromethanesulfonate (Mg(CF3SO3)2) salt and magnesium perchlorate (Mg(ClO4)2) salt. The magnesium ion cells were fabricated using the optimized cathode materials, and the cell performances were studied by galvanostatic charge–discharge test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lin M, Gong M, Lu B et al (2015) An ultrafast rechargeable aluminium-ion battery. Nature 520:325–328. https://doi.org/10.1038/nature14340

    Article  CAS  PubMed  Google Scholar 

  2. Ponrouch A, Palacin MR (2018) On the road toward calcium-based batteries. Curr Opin Electrochem 9:1–7. https://doi.org/10.1016/j.coelec.2018.02.001

    Article  CAS  Google Scholar 

  3. Muldoon J, Bucur CB, Gregory T (2014) Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev 114:11683–11720. https://doi.org/10.1021/cr500049y

    Article  CAS  PubMed  Google Scholar 

  4. Aurbach D, Gofer Y, Lu Z et al (2001) A short review on the comparison between Li battery systems and rechargeable magnesium battery technology. J Power Sources 98:28–32. https://doi.org/10.1016/S0378-7753(01)00585-7

    Article  Google Scholar 

  5. Carter TJ, Mohtadi R, Arthur TS et al (2014) Boron clusters as highly stable magnesium-battery electrolytes. Angew Chem 126:3237–3241. https://doi.org/10.1002/ange.201310317

    Article  Google Scholar 

  6. Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E (2000) Prototype systems for rechargeable magnesium batteries. Nature 407:724–727. https://doi.org/10.1038/35037553

    Article  CAS  PubMed  Google Scholar 

  7. Song J, Noked M, Gillette E, Duay J, Rubloff G, Lee SB (2015) Activation of a MnO2 cathode by water-stimulated Mg2+ insertion for a magnesium ion battery. Phys Chem Chem Phys 17:5256–5264. https://doi.org/10.1039/C4CP05591H

    Article  CAS  PubMed  Google Scholar 

  8. Liu H, Cao Q, Fu LJ et al (2006) Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochem Commun 8:1553–1557. https://doi.org/10.1016/j.elecom.2006.07.014

    Article  CAS  Google Scholar 

  9. Singh N, Arthur TS, Ling C, Matsui M, Mizuno F (2013) A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem Commun 49:149–151. https://doi.org/10.1039/c2cc34673g

    Article  CAS  Google Scholar 

  10. Shterenberg I, Salama M, Gofer Y, Aurbach D (2017) Hexafluorophosphate-based solutions for mg batteries and the importance of chlorides. Langmuir 33(37):9472–9478. https://doi.org/10.1021/acs.langmuir.7b01609

    Article  CAS  PubMed  Google Scholar 

  11. Wan LF, Prendergast D (2014) The solvation structure of Mg ions in dichloro complex solutions from first-principles molecular dynamics and simulated X-ray absorption spectra. J Am Chem Soc 136:14456–14464. https://doi.org/10.1021/ja505967u

    Article  CAS  PubMed  Google Scholar 

  12. Kar M, Tutusaus O, MacFarlane DR et al (2018) Novel and versatile room temperature ionic liquids for energy storage. Energy Environ Sci 12:566–571. https://doi.org/10.1039/c8ee02437e

    Article  CAS  Google Scholar 

  13. Orikasa Y, Masese T, Koyama Y et al (2014) High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Sci Rep 4:1–6. https://doi.org/10.1038/srep05622

    Article  CAS  Google Scholar 

  14. Son S, Gao T, Harvey SP et al (2018) Magnesium chemistry in carbonate electrolytes. Nat Chem 10:532–539. https://doi.org/10.1038/s41557-018-0019-6

    Article  CAS  PubMed  Google Scholar 

  15. Mesallam M, Sheha E, Kamar EM, Sharma N (2018) Graphene and magnesiated graphene as electrodes for magnesium ion batteries. Mater Lett 232:103–106. https://doi.org/10.1016/j.matlet.2018.08.080

    Article  CAS  Google Scholar 

  16. Kim C, Phillips PJ, Key B et al (2015) Direct observation of reversible magnesium ion intercalation into a spinel oxide host. Adv Mater. https://doi.org/10.1002/adma.201500083

  17. Liu M, Rong Z, Malik R et al (2015) Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations. Energy Environ Sci 8:964–974. https://doi.org/10.1039/c4ee03389b

    Article  CAS  Google Scholar 

  18. Feng Z, Chen X, Qiao L et al (2015) Phase-controlled electrochemical activity of epitaxial Mg-spinel thin films. ACS Appl mater interfaces 7:28438–28443. https://doi.org/10.1021/acsami.5b09346

    Article  CAS  PubMed  Google Scholar 

  19. Zhao J (1999) Photoassisted degradation of dye degradation of alizarin red under visible light radiation in air-equilibrated aqueous TiO2 dispersions. Environ Sci Technol 33:2081–2087. https://doi.org/10.1021/es9807643

    Article  Google Scholar 

  20. Qu P, Zhao J, Shen T, Hidaka H (1998) TiO2-assisted photodegradation of dyes: a study of two competitive primary processes in the degradation of RB in an aqueous TiO2 colloidal solution. J Mol Catal A Chem 129:257–268. https://doi.org/10.1016/S1381-1169(97)00185-4

    Article  CAS  Google Scholar 

  21. Odaka H, Iwata S, Taga N et al (1997) Study on electronic structure and optoelectronic properties of indium oxide by first-principles calculations. Japanese J Appl Physics 36:5551–5554. https://doi.org/10.1143/JJAP.36.5551

    Article  CAS  Google Scholar 

  22. Schinzer C, Heyd F, Matar SF (1999) Zn3In2O6-crystallographic and electronic structure. J Mater Chem 9:1569–1573. https://doi.org/10.1039/A900790C

    Article  CAS  Google Scholar 

  23. Peng X, Wickham J, Alivisatos AP (1998) Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. 7863:5343–5344. https://doi.org/10.1021/ja9805425

  24. Liu Y, Liu D, Zhang Z, Zheng S, Wan H, Dou A, Su M (2017) Investigation of the structural and electrochemical performance of Li1.2Ni0.2Mn0.6O2 with Cr doping. Ionics 24:2251–2259. https://doi.org/10.1007/s11581-017-2352-y

    Article  CAS  Google Scholar 

  25. Rahman MF, Gerosa D, Mancinelli V (2015) Synthesis and characterization of cathode material for rechargeable magnesium battery technology. 9:1204–1207

  26. Elong K, Kamarulzaman N, Rusdi R, et al (2013) Combustion synthesis route and their electrochemical characteristics. ISRN condensed matter physics. https://doi.org/10.1155/2013/568191

  27. Sinha NN, Munichandraiah N (2008) Electrochemical conversion of LiMn2O4 to MgMn2O4 in aqueous electrolytes. Electrochem Solid-State Lett 11:F23–F26. https://doi.org/10.1149/1.2972990

    Article  CAS  Google Scholar 

  28. Prabaharan SRS, Michael MS, Ikuta H et al (2004) Li2NiTiO4 - a new positive electrode for lithium batteries: soft-chemistry synthesis and electrochemical characterization. Solid State Ionics 172:39–45. https://doi.org/10.1016/j.ssi.2004.01.036

    Article  CAS  Google Scholar 

  29. Michalska M, Ziółkowska DA, Jasiński JB et al (2018) Improved electrochemical performance of LiMn2O4 cathode material by Ce doping. Electrochim Acta 276:37–46. https://doi.org/10.1016/j.electacta.2018.04.165

    Article  CAS  Google Scholar 

  30. Sufri M, Kamarulzaman N (2018) Comparative study between supported and doped MgO catalysts in supercritical water gasification for hydrogen production. Int J Hydrog Energy 44:3690–3701. https://doi.org/10.1016/j.ijhydene.2018.12.102

    Article  CAS  Google Scholar 

  31. Hambali D, Zainol NH, Othman L, Md Isa KB, Osman Z (2019) Magnesium ion-conducting gel polymer electrolytes based on poly(vinylidene chloride-co-acrylonitrile) (PVdC-co-AN): a comparative study between magnesium trifluoromethanesulfonate (MgTf2) and magnesium bis(trifluoromethanesulfonimide) (Mg(TFSI)2). Ionics (Kiel) 25:1187–1198. https://doi.org/10.1007/s11581-018-2666-4

    Article  CAS  Google Scholar 

  32. Zhang H, Ye K, Shao S et al (2017) Electrochimica Acta. Octahedral magnesium manganese oxide molecular sieves as the cathode material of aqueous rechargeable magnesium-ion battery. 229:371–379. https://doi.org/10.1016/j.electacta.2017.01.110

  33. Kanevskii LS, Dubasova VS (2005) Degradation of lithium-ion batteries and how to fight it: a review. Russ J Electrochem 41:1–16. https://doi.org/10.1007/s11175-005-0042-y

  34. Sun X, Bonnick P, Duffort V et al (2016) A high capacity thiospinel cathode for Mg batteries. Energy Environ Sci 9:2273–2277. https://doi.org/10.1039/c6ee00724d

    Article  CAS  Google Scholar 

  35. Connell JG, Genorio B, Lopes PP et al (2016) Tuning the reversibility of mg anodes via controlled surface passivation by H2O/Cl- in organic electrolytes. Chem Mater 28:8268–8277. https://doi.org/10.1021/acs.chemmater.6b0322bb

    Article  CAS  Google Scholar 

  36. Wang L, Vullum PE, Asheim K et al (2018) High capacity mg batteries based on surface-controlled electrochemical reactions. Nano Energy 48:227–237. https://doi.org/10.1016/j.nanoen.2018.03.061

    Article  CAS  Google Scholar 

  37. Cabello M, Alcántara R, Nacimiento F et al (2015) Electrochemical and chemical insertion/deinsertion of magnesium in spinel-type MgMn2O4 and lambda-MnO2 for both aqueous and non-aqueous magnesium-ion batteries. 3:8728–8735. https://doi.org/10.1039/c5ce01436k

  38. Jin W, Yin G, Wang Z, Fu YQ (2016) Surface stability of spinel MgNi0.5Mn1.5O4 and MgMn2O4 as cathode materials for magnesium ion batteries. Appl Surf Sci 385:72–79. https://doi.org/10.1016/j.apsusc.2016.05.096

    Article  CAS  Google Scholar 

  39. Banu A, Sakunthala A, Thamilselvan M et al (2019) Preparation, characterization and comparative electrochemical studies of MgM X Mn 2-X O 4 (x=0, 0.5; M= Ni/co). Ceram Int 45:13072–13085. https://doi.org/10.1016/j.ceramint.2019.03.240

    Article  CAS  Google Scholar 

Download references

Funding

The Ministry of Education Malaysia and University of Malaya provided FP044-2017A grant and GP047B-2018 grant award, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Osman.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harudin, N., Osman, Z., Majid, S.R. et al. Improved electrochemical properties of MgMn2O4 cathode materials by Sr doping for Mg ion cells. Ionics 26, 3947–3958 (2020). https://doi.org/10.1007/s11581-020-03531-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03531-7

Keywords

Navigation