Skip to main content

Advertisement

Log in

Effect of using different reducing agents on the thermal, structural, morphological and electrical properties of aluminium-doped MgMn2O4 cathode material for magnesium ion cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 01 July 2022

This article has been updated

Abstract

Magnesium (Mg) ion cell is a promising candidate as energy storage instead of lithium-ion cell due to its advantages such as naturally abundant, low cost, nontoxic and atmospherically stable. However, the applications of Mg-ion cells in many devices were hindered due to the difficulty in selecting cathode material that can reversibly intercalate Mg-ion into host material. In this work, the cathode materials of MgMn2O4 doped with aluminium (Al) were prepared and characterized. These materials were synthesized by using self-propagating combustion method and the precursors obtained were annealed at temperature of 700 °C for 6 h. Triethanolamine and citric acid were used as the reducing agents. The cathode materials were characterized in terms of their thermal, structural morphological and elemental properties by using thermogravimetric analysis, X-ray diffraction, field emission scanning electron microscopy and energy-dispersive X-ray, respectively. To study the electrochemical properties and stability of the cathode materials, linear sweep voltammetry and cyclic voltammetry measurements were performed using 1 M magnesium trifluoromethanesulfonate in EC:DME (1:1) as an electrolyte. The performance of Mg-ion cell with optimized cathode material was studied by galvanostatic charge–discharge test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

We certify that material preparation, data collection and data analysis were performed by authors. The manuscript contents of the data are fully original from the authors and are not under review at any other publication.

Change history

References

  1. J.C. Knight, S. Therese, A. Manthiram, A.C.S. Appl, Mater. Interfaces 7, 22953 (2015)

    Article  CAS  Google Scholar 

  2. J. Song, E. Sahadeo, M. Noked, S.B. Lee, J. Phys. Chem. Lett. 7, 1736 (2016)

    Article  CAS  Google Scholar 

  3. Y. Cheng, Y. Shao, J.G. Zhang, V.L. Sprenkle, J. Liu, G. Li, Chem. Commun. 50, 9644 (2014)

    Article  CAS  Google Scholar 

  4. M. Mao, T. Gao, S. Hou, F. Wang, J. Chen, Z. Wei, X. Fan, X. Ji, J. Ma, C. Wang, Nano Lett. 19, 6665 (2019)

    Article  CAS  Google Scholar 

  5. W. Kaveevivitchai, A.J. Jacobson, Chem. Mater. 28, 4593 (2016)

    Article  CAS  Google Scholar 

  6. Y. Gu, Y. Katsura, T. Yoshino, H. Takagi, K. Taniguchi, Sci. Rep. 5, 1 (2015)

    Google Scholar 

  7. M.M. Huie, D.C. Bock, E.S. Takeuchi, A.C. Marschilok, K.J. Takeuchi, Coord. Chem. Rev. 287, 15 (2015)

    Article  CAS  Google Scholar 

  8. W. Jin, G. Yin, Z. Wang, Y.Q. Fu, Appl. Surf. Sci. 385, 72 (2016)

    Article  CAS  Google Scholar 

  9. Q.D. Truong, M.K. Devaraju, P.D. Tran, Y. Gambe, K. Nayuki, Y. Sasaki, I. Honma, Chem. Mater. 29, 6245 (2017)

    Article  CAS  Google Scholar 

  10. M. Chen, R. Wu, S. Ju, X. Zhang, F. Xue, W. Xing, Microporous Mesoporous Mater. 261, 29 (2018)

    Article  CAS  Google Scholar 

  11. B.J. Hwang, R. Santhanam, D.G. Liu, Y.W. Tsai, J. Power Sources 102, 326 (2001)

    Article  CAS  Google Scholar 

  12. C. Zhenfei, M. Yangzhou, H. Xuanning, Y. Xiaohui, Y. Zexin, Z. Shihong, J Energy Storage 27, 101036 (2020)

    Article  Google Scholar 

  13. M.A. Kebede, M.J. Phasha, N. Kunjuzwa, L.J. le Roux, D. Mkhonto, K.I. Ozoemena, M.K. Mathe, Sustain. Energy Technol. Assess. 5, 44 (2014)

    Google Scholar 

  14. N. Kamarulzaman, R. Yusoff, N. Kamarudin, N.H. Shaari, N.A.A. Aziz, M.A. Bustam, N. Blagojevic, M. Elcombe, M. Blackford, M. Avdeev, A.K. Arof, J. Power Sources 188, 274 (2009)

    Article  CAS  Google Scholar 

  15. N. Kamarulzaman, R.H.Y. Subban, K. Ismail, N. Othman, W.J. Basirun, M.A. Bustam, S.A. Puad, R. Yusof, A.F.M. Fadzil, Ionics (Kiel). 11, 446 (2005)

    Article  CAS  Google Scholar 

  16. J.S. Gnanaraj, V.G. Pol, A. Gedanken, D. Aurbach, Electrochem. Commun. 5, 940 (2003)

    Article  CAS  Google Scholar 

  17. J.L. Wang, Z.H. Li, J. Yang, J.J. Tang, J.J. Yu, W.B. Nie, G.T. Lei, Q.Z. Xiao, Electrochim. Acta 75, 115 (2012)

    Article  CAS  Google Scholar 

  18. X. Zhang, H. Zheng, V. Battaglia, R.L. Axelbaum, J. Power Sources 196, 3640 (2011)

    Article  CAS  Google Scholar 

  19. H. Du, X. Zhang, Z. Chen, D. Wu, Z. Zhang, J. Li, RSC Adv. 8, 22813 (2018)

    Article  CAS  Google Scholar 

  20. A.M. Mahat, N. Kamarulzaman, M.S. Mastuli, N. Badar, N.A. Jani, M.F. Omar, Results Mater. 6, 100075 (2020)

    Article  Google Scholar 

  21. G.A. Roberts, E.J. Cairns, J.A. Reimer, J. Power Sources 110, 424 (2002)

    Article  CAS  Google Scholar 

  22. Y. Zhang, G. Liu, C. Zhang, Q. Chi, T. Zhang, Y. Feng, K. Zhu, Y. Zhang, Q. Chen, D. Cao, Chem. Eng. J. 392, 123652 (2020)

    Article  CAS  Google Scholar 

  23. M. Ramaswamy, T. Malayandi, S. Subramanian, J. Srinivasalu, M. Rangaswamy, Ionics (Kiel). 23, 1771 (2017)

    Article  CAS  Google Scholar 

  24. R. Dang, Q. Li, M. Chen, Z. Hu, X. Xiao, Phys. Chem. Chem. Phys. 21, 314 (2019)

    Article  CAS  Google Scholar 

  25. N. Harudin, Z. Osman, S.R. Majid, L. Othman, D. Hambali, M.M. Silva, Ionics (Kiel). 26, 3947 (2020)

    Article  CAS  Google Scholar 

  26. T. Fang, J.G. Duh, S.R. Sheen, Thin Solid Films 469–470, 361 (2004)

    Article  Google Scholar 

  27. Y. Gao, M.V. Yakovleva, W.B. Ebner, Electrochem. Solid-State Lett. 1, 117 (1998)

    Article  CAS  Google Scholar 

  28. J. Bennet, R. Tholkappiyan, K. Vishista, N.V. Jaya, F. Hamed, Appl. Surf. Sci. 383, 113 (2016)

    Article  CAS  Google Scholar 

  29. M. Inoue, I. Hirasawa, J. Cryst. Growth 380, 169 (2013)

    Article  CAS  Google Scholar 

  30. Y. Liu, Y. Xu, Y. Yan, D. Hu, L. Yang, R. Shen, Starch/Staerke 67, 612 (2015)

    Article  CAS  Google Scholar 

  31. M.A. Saadiah, D. Zhang, Y. Nagao, S.K. Muzakir, A.S. Samsudin, J. Non. Cryst. Solids 511, 201 (2019)

    Article  CAS  Google Scholar 

  32. A.M. Mahat, M.S. Mastuli, N. Badar, N. Kamarulzaman, J. Mater, Sci 32(8), 10927–10942 (2021)

    CAS  Google Scholar 

  33. M.O. Ahmed, A. Shrpip, M. Mansoor, Processes 8, 1 (2020)

    CAS  Google Scholar 

  34. R. Venkataraman, G. Das, S.R. Singh, L.C. Pathak, R.N. Ghosh, B. Venkataraman, R. Krishnamurthy, Mater. Sci. Eng. A 445–446, 269 (2007)

    Article  Google Scholar 

  35. E.M. Prieto, A.D. Talley, N.R. Gould, K.J. Zienkiewicz, S.J. Drapeau, K.N. Kalpakci, S.A. Guelcher, J. Biomed. Mater. Res. 103, 1641 (2015)

    Article  CAS  Google Scholar 

  36. H. Aprida, S. Hidayat, N. Syakir, R. Siregar, Fitrilawati, J. Phys. Conf. Ser. 1080, 012032 (2018).

  37. S.T. Palisoc, J.J.P. Salvacion, J.C. Robles, M.T. Natividad, Orient. J. Chem. 35, 798 (2019)

    Article  CAS  Google Scholar 

  38. C. Cometto, G. Yan, S. Mariyappan, J.-M. Tarascon, J. Electrochem. Soc. 166, A3723 (2019)

    Article  CAS  Google Scholar 

  39. J.G. Connell, B. Genorio, P.P. Lopes, D. Strmcnik, V.R. Stamenkovic, N.M. Markovic, Chem. Mater. 28, 8268 (2016)

    Article  CAS  Google Scholar 

  40. P. Saha, M.K. Datta, O.I. Velikokhatnyi, A. Manivannan, D. Alman, P.N. Kumta, Prog. Mater. Sci. 66, 1 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to Universiti Malaya and Ministry of Higher Education Malaysia for GP047B-2018 grant and FP036-2020 grant awarded, respectively.

Funding

The study was supported by grants from Universiti Malaya (GP047B-2018) and Ministry of Higher Education Malaysia (FP036-2020). The authors declare that they have no conflict of interest. All procedures do not contain any studies involving animals and human participants performed by any of the authors. This manuscript is our original unpublished work and it has not been submitted to any other journals.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The authors declare that they have no known competing financial interests or personal relationship that could have appeared to influence the work reported in this paper. All authors who involved in this manuscript are aware of its contents and approve its submission with conflict of interest.

Corresponding authors

Correspondence to A. M. Mahat or Z. Osman.

Ethics declarations

Conflict of interest

We certify that the submission is original work and we believe that our findings could be interest to the readers of the Journal of Materials Science: Materials in Electronics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosli, R., Othman, L., Harudin, N. et al. Effect of using different reducing agents on the thermal, structural, morphological and electrical properties of aluminium-doped MgMn2O4 cathode material for magnesium ion cells. J Mater Sci: Mater Electron 33, 8003–8015 (2022). https://doi.org/10.1007/s10854-022-07951-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07951-1

Navigation