Skip to main content

Advertisement

Log in

Porous nano-silicon/TiO2/rGO@carbon architecture with 1000-cycling lifespan as superior durable anodes for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Novel porous nano-silicon/TiO2/rGO@carbon anodes with superior lifespan and desirable cycling stability are prepared by a step-wise synthetic procedure. The hybrid exhibits a high specific capacity of 1073.43 mAh g−1 at a current density of 500 mA g−1. Additionally, it delivers a reversible capacity of 724.08 mAh g−1 at 1000 mA g−1 even after 1000 long-term cycles. Simultaneously, a large average capacity is reinstated after cycling at high rates, such as 994.76, 743.33, and 599.70 mAh g−1 at 1000, 2000, and 3000 mA g−1, respectively. The greatly ameliorative electrochemical characteristics could be attributed to the abundant buffering space of hierarchical architecture, good separation of mechanically robust anatase-TiO2, sustainable confinement of elastic carbon skeletons, as well as improved electrical conductivity of rGO, which could suppress drastic volume variations and promote multiple Li+/electron transport without distinct pulverization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lu B, Ma B, Deng X, Wu B, Wu Z, Luo J, Wang X, Chen G (2018) Dual stabilized architecture of hollow Si@TiO2@C nanospheres as anode of high-performance Li-ion battery. Chem Eng J 351:269–279

    Article  CAS  Google Scholar 

  2. Wang C, Li X, Wang Z, Xu W, Liu J, Gao F, Kovarik L, Zhang J, Howe J, Burton D, Liu Z, Xiao X, Thevuthasan S, Baer D (2012) In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. Nano Lett 12:1624–1632

    Article  CAS  Google Scholar 

  3. Maroni F, Carbonari G, Croce F, Tossici R, Nobili F (2017) Anatase-TiO2 as low-cost and sustainable buffering filler for nanosize silicon anodes in lithium-ion batteries. ChemSusChem 10:4771–4777

    Article  CAS  Google Scholar 

  4. Zhou M, Cai T, Pu F, Chen H, Wang Z, Zhang H, Guang S (2013) Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries. ACS Appl Mater Interfaces 5:3449–3455

    Article  CAS  Google Scholar 

  5. Luo W, Wang Y, Wang L, Jiang W, Chou S, Dou S, Liu H, Yang J (2016) Silicon/mesoporous carbon/crystalline TiO2 nanoparticles for highly stable lithium storage. ACS Nano 10:10524–10532

    Article  CAS  Google Scholar 

  6. Bruce P, Scrosati B, Tarascon J (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946

    Article  CAS  Google Scholar 

  7. Chan C, Peng H, Liu G, McilWrath K, Zhang X, Huggins R, Cui Y (2015) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:187–191

    Google Scholar 

  8. Liu H, Guo ZP, Wang JZ, Konstantinov K (2010) Si-based anode materials for lithium rechargeable batteries. J Mater Chem 20:10055–10057

    Article  CAS  Google Scholar 

  9. Fang S, Shen L, Xu G, Nie P, Wang J, Dou H, Zhang X (2014) Rational design of void-involved Si@TiO2 nanospheres as high-performance anode material for lithium-ion batteries. ACS Appl Mater Interfaces 6:6497–6503

    Article  CAS  Google Scholar 

  10. Hu L, H W, Hong S, Cui L, McDonough J, Bohy S, Cui Y (2009) Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes. Nano Lett 9:491–495

    Article  Google Scholar 

  11. Xu Y, Zhu Y, Han F, Luo C, Wang C (2015) 3D Si/C fiber paper electrodes fabricated using a combined electrospray/electrospinning technique for Li-ion batteries. Adv Energy Mater 5:1400753–1400759

    Article  Google Scholar 

  12. Du F, Li B, Fu W, Xiong Y, Wang K, Chen J (2014) Surface binding of polypyrrole on porous silicon hollow nanospheres for Li-ion battery anodes with high structure stability. Adv Mater 26:6145–6150

    Article  CAS  Google Scholar 

  13. Chen Y, Liu L, Xiong J, Yang T, Qin Y, Yan C (2016) Porous Si nanowires from cheap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries. Adv Funct Mater 25:6701–6709

    Article  Google Scholar 

  14. Xie J, Tong L, Su L, Xu Y, Wang L, Wang Y (2017) Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance. J Power Sources 342:529–536

    Article  CAS  Google Scholar 

  15. Tao H, Fan L, Song W, Wu M, He X, Qu X (2014) Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithiumion batteries. Nanoscale 6:3138–3142

    Article  CAS  Google Scholar 

  16. Wu Q, Tran T, Lu W, Wu J (2014) Electrospun silicon/carbon/titanium oxide composite nanofibers for lithium ion batteries. J Power Sources 258:39–45

    Article  CAS  Google Scholar 

  17. Li J, Huang J, Li J, Cao L, Qi H, Cheng Y (2019) N-doped TiO2/rGO hybrids as superior Li-ion battery anodes with enhanced Li-ions storage capacity. J Alloys Compd 784:165–172

    Article  CAS  Google Scholar 

  18. Uchida S, Mihashi M, Yamagata M, Ishikawa M (2015) Electrochemical properties of non-nano-silicon negative electrodes prepared with a polyimide binder. J Power Sources 27:118–122

    Article  Google Scholar 

  19. Zhao H, Wei Y, Qiao RM, Zhu CH, Zheng ZY, Ling M, Jia Z, Bai Y, Fu YB, Lei JL, Song XY, Battaglia VS, Yang WL, Messersmith PB, Liu G (2015) Conductive polymer binder for high-tap-density nanosilicon material for lithium-ion battery negative electrode application. Nano Lett 15:7927–7932

    Article  CAS  Google Scholar 

  20. Xi Q, Huang J, Li J, Jie Y, Wang T, Cao L, Wang C, Guo P (2019) Sulfur-regulated the binding configurations of nitrogen in three-dimensional graphene to improve lithium storage kinetics. J Alloys Compd 786:1013–1020

    Article  CAS  Google Scholar 

  21. Nguyen CC, Seo DM, Chandrasiri KW, Lucht BL (2017) Improved cycling performance of a Si nanoparticle anode utilizing citric acid as a surface-modifying agent. Langmuir 33:9254–9261

    Article  CAS  Google Scholar 

  22. Chen J, Yao B, Li C, Shi G (2013) An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229

    Article  CAS  Google Scholar 

  23. Yoon YS, Jee SH, Lee SH, Nam SC (2011) Nano Si-coated graphite composite anode synthesized by semi-mass production ball milling for lithium secondary batteries. Surf Coat Technol 206:553–558

    Article  CAS  Google Scholar 

  24. Li J, Ru Q, Hu S, Sun D, Zhang B, Hou X (2013) Spherical nano-SnSb/MCMB/carbon core-shell composite for high stability lithium ion battery anodes. Electrochim Acta 113:505–513

    Article  CAS  Google Scholar 

  25. Chen H, Wang Z, Hou X, Fu L, Wang S, Hu X, Qin H, Wu Y, Ru Q, Liu X, Hu S (2017) Mass-producible method for preparation of a carbon-coated graphite@plasma nano-silicon@carbon composite with enhanced performance as lithium ion battery anode. Electrochim Acta 249:113–121

    Article  CAS  Google Scholar 

  26. Ren M, Xu H, Li F, Liu W, Gao C, Su L, Li G, Hei J (2017) Sugarapple-like N-doped TiO2@carbon core-shell spheres as high-rate and long-life anode materials for lithium-ion batteries. J Power Sources 353:237–244

    Article  CAS  Google Scholar 

  27. Chinh VD, Broggi A, Palma LD, Scarsella M, Speranza G, Vilardi G, Thang P (2018) XPS spectra analysis of Ti2+, Ti3+ ions and dye photodegradation evaluation of titania-silica mixed oxide nanoparticles. J Electron Mater 47:2215–2224

    Article  CAS  Google Scholar 

  28. Shi X, Zhang Z, Du K, Lai Y, Fang J, Li J (2016) Anatase TiO2@C composites with porous structure as an advanced anode material for Na ion batteries. J Power Sources 330:1–6

    Article  CAS  Google Scholar 

  29. Mo Y, Ru Q, Song X, Guo L, Chen J, Hou X, Hu S (2016) The sucrose-assisted NiCo2O4@C composites with enhanced lithium storage properties. Carbon 109:616–623

    Article  CAS  Google Scholar 

  30. Kang X, Zhu H, Wang C, Sun K, Yin J (2018) Biomass derived hierarchically porous and heteroatom-doped carbons for supercapacitors. J Colloid Interface Sci 509:369–383

    Article  CAS  Google Scholar 

  31. Lotfabad EM, Kalisvaart P, Cui K, Kohandehghan A, Kupst M, Olsen B, Mitlin D (2013) ALD TiO2 coated silicon nanowires for lithium ion battery anodes with enhanced cycling stability and coulombic efficiency. Phys Chem Chem Phys 15:13646

    Article  Google Scholar 

  32. Liu Y, Huang J, Zhang X, Wu J, Bakera A, Zhang H, Chang S, Zhang X (2018) A bm-SiO/Ni/rGO composite as an anode material for lithium-ion batteries. J Alloys Compd 249:236–243

    Article  Google Scholar 

  33. Jiao X, Zeng T, Ji P, Peng Q, Shang B, Hu X (2018) Sb embedded TiO2/C spheres as high cyclability anode for lithium ion battery. J Alloys Compd 739:1–8

    Article  CAS  Google Scholar 

  34. Li J, Qi H, Wang Q, Xu Z, Liu Y, Li Q, Kong X, Huang J (2018) Constructing graphene-like nanosheets on porous carbon framework for promoted rate performance of Li-ion and Na-ion storage. Electrochim Acta 271:92–102

    Article  CAS  Google Scholar 

  35. Dou F, Shi L, Song P, Chen G, An J, Liu H, Zhang D (2018) Design of orderly carbon coatings for SiO anodes promoted by TiO2 toward high performance lithium-ion battery. Chem Eng J 338:488–495

    Article  CAS  Google Scholar 

  36. Liu H, Zou Y, Huang L, Yin H, Xi C, Chen X, Shentu H, Li C, Zhang J, Lv C, Fan M (2018) Enhanced electrochemical performance of sandwich-structured polyaniline-wrapped silicon oxide/carbon nanotubes for lithium-ion batteries. Appl Surf Sci 442:204–212

    Article  CAS  Google Scholar 

  37. Nanda J, Datta MK, Remillard JT, O’Neill A, Kumta PN (2009) In situ raman microscopy during discharge of a high capacity silicon-carbon composite Li-ion battery negative electrode. Electrochem Commun 11:235–237

    Article  CAS  Google Scholar 

Download references

Funding

This study is financially supported by the Outstanding Young Scholar Project (8S0256) from South China Normal University, the Union Project of the National Natural Science Foundation of China and Guangdong Province (U1601214), the Scientific and Technological Plan of Guangdong Province (2017A040405047), the Key Projects of Guangdong Province Nature Science Foundation (2017B030311013), and the Scientific and Technological Plan of Guangzhou City (201607010274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Ru.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Ru, Q., Gao, Y. et al. Porous nano-silicon/TiO2/rGO@carbon architecture with 1000-cycling lifespan as superior durable anodes for lithium-ion batteries. Ionics 25, 4675–4684 (2019). https://doi.org/10.1007/s11581-019-03050-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03050-0

Keywords

Navigation