Skip to main content
Log in

Preparation of Ni/NiO-C catalyst with NiO crystal: catalytic performance and mechanism for ethanol oxidation in alkaline solution

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Highly active and durable catalysts are imperative for the development of alcohol oxidation research. Herein, a Ni/NiO-C catalyst with hollow NiO crystal can be used in ethanol oxidation. The hollow NiO nanoparticles are absolutely coated in the amorphous carbon and the generated NiO crystal remarkably raises the electrocatalytic performances of catalysts. Among all samples, the Ni/NiO-C3 catalyst shows the highest current density in 0.5 M ethanol solution. This is mainly derived from the synergistic effect of the crystallographic form, carbon coating, and hollow structure. Besides, the reaction mechanism of Ni/NiO-C3 electrode is controlled by charge transfer in high-concentration ethanol. With the concentration of ethanol decreased, a diffusion control mechanism is observed on Ni/NiO-C3 electrode. The attenuation rate of current density is only 0.1% after 3600 s by chronoamperometry in 0.1 M ethanol aqueous solution, indicating that the Ni/NiO-C3 electrode has a superior stability. Moreover, Ni/NiO-C3 electrode exhibits an rapid current response in 0.1 mM ethanol solution and a linear relationship between 0.69 and 40.17 mM, which provides a new idea for the research of fuel cell type ethanol sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. An L, Zhao TS (2017) Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production. J Power Sources 341:199–211. https://doi.org/10.1016/j.jpowsour.2016.11.117

    Article  CAS  Google Scholar 

  2. Antoniassi RM, Otubo L, Vaz JM, Neto AO, Spinacé EV (2016) Synthesis of Pt nanoparticles with preferential (100) orientation directly on the carbon support for direct ethanol fuel cell. J Catal 342:67–74. https://doi.org/10.1016/j.jcat.2016.07.022

    Article  CAS  Google Scholar 

  3. Fetohi AE, Amin RS, Hameed RMA, El-Khatib KM (2017) Effect of nickel loading in Ni@Pt/C electrocatalysts on their activity for ethanol oxidation in alkaline medium. Electrochim Acta 242:187–201. https://doi.org/10.1016/j.electacta.2017.05.022

    Article  CAS  Google Scholar 

  4. Huang CY, Lin JS, Pan WH, Shih CM, Liu YL, Lue SJ (2016) Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes. J Power Sources 303:267–277. https://doi.org/10.1016/j.jpowsour.2015.10.108

    Article  CAS  Google Scholar 

  5. Akhairi MAF, Kamarudin SK (2016) Catalysts in direct ethanol fuel cell (DEFC): an overview. Int J Hydrog Energy 41(7):4214–4228. https://doi.org/10.1016/j.ijhydene.2015.12.145

    Article  CAS  Google Scholar 

  6. Semwal V, Shrivastav AM, Verma R, Gupta BD (2016) Surface plasmon resonance based fiber optic ethanol sensor using layers of silver/silicon/hydrogel entrapped with ADH/NAD. Sensor Actuat B-Chem 230:485–492. https://doi.org/10.1016/j.snb.2016.02.084

    Article  CAS  Google Scholar 

  7. Zito CA, Perfecto TM, Volanti DP (2017) Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO2 nanoparticles under humid atmosphere. Sensor Actuat B-Chem 244:466–474. https://doi.org/10.1016/j.snb.2017.01.015

    Article  CAS  Google Scholar 

  8. Lupan O, Postica V, Gröttrup J, Mishra AK, de Leeuw NH, Adelung R (2017) Enhanced UV and ethanol vapour sensing of a single 3-D ZnO tetrapod alloyed with Fe2O3 nanoparticles. Sensor Actuat B-Chem 245:448–461. https://doi.org/10.1016/j.snb.2017.01.107

    Article  CAS  Google Scholar 

  9. Modjtahedi A, Amirfazli A, Farhad S (2016) Low catalyst loaded ethanol gas fuel cell sensor. Sensor Actuat B-Chem 234:70–79. https://doi.org/10.1016/j.snb.2016.04.108

    Article  CAS  Google Scholar 

  10. Allan JTS, Rahman MR, Easton EB (2017) The influence of relative humidity on the performance of fuel cell catalyst layers in ethanol sensors. Sensor Actuat B-Chem 239:120–130. https://doi.org/10.1016/j.snb.2016.07.156

    Article  CAS  Google Scholar 

  11. Lv R, Wang H, Yu H, Peng F (2017) Controllable preparation of holey graphene and electrocatalytic performance for oxygen reduction reaction. Electrochim Acta 228:203–213. https://doi.org/10.1016/j.electacta.2017.01.024

    Article  CAS  Google Scholar 

  12. Ye KH, Zhou SA, Zhu XC, CW X, Shen PK (2013) Stability analysis of oxide (CeO2, NiO, Co3O4 and Mn3O4) effect on Pd/C for methanol oxidation in alkaline medium. Electrochim Acta 90:108–111. https://doi.org/10.1016/j.electacta.2012.12.012

    Article  CAS  Google Scholar 

  13. Niu M, Xu W, Zhu S, Liang Y, Cui Z, Yang X, Inoue A (2017) Synthesis of nanoporous CuO/TiO2/Pd-NiO composite catalysts by chemical dealloying and their performance for methanol and ethanol electro-oxidation. J Power Sources 362:10–19. https://doi.org/10.1016/j.jpowsour.2017.07.011

    Article  CAS  Google Scholar 

  14. Lei H, Sun W, Sun Z (2017) Amorphous Co3O4-decorated Pd as an efficient electrocatalyst for methanol oxidation. Nano 1750078

  15. Huang H, Chen Q, He M, Sun X, Wang X (2013) A ternary Pt/MnO2/graphene nanohybrid with an ultrahigh electrocatalytic activity toward methanol oxidation. J Power Sources 239:189–195. https://doi.org/10.1016/j.jpowsour.2013.03.133

    Article  CAS  Google Scholar 

  16. Jin Z, Wang Q, Zheng W, Cui X (2016) Highly ordered periodic au/TiO2 hetero-nanostructures for plasmon-induced enhancement of the activity and stability for ethanol electro-oxidation. ACS Appl Mater Inter 8(8):5273–5279. https://doi.org/10.1021/acsami.5b11259

    Article  CAS  Google Scholar 

  17. Daryakenari AA, Hosseini D, Mirfasih MH, Apostoluk A, Müller CR, Delaunay JJ (2017) Formation of NiO nanoparticle-attached nanographitic flake layers deposited by pulsed electrophoretic deposition for ethanol electro-oxidation. J Alloy Compd 698:571–576. https://doi.org/10.1016/j.jallcom.2016.12.136

    Article  CAS  Google Scholar 

  18. Hong W, Wang J, Wang E (2014) Facile synthesis of highly active PdAu nanowire networks as self-supported electrocatalyst for ethanol electrooxidation. ACS Appl Mater Inter 6(12):9481–9487. https://doi.org/10.1021/am501859k

    Article  CAS  Google Scholar 

  19. Wang W, Yang Y, Liu Y, Zhang Z, Dong W, Lei Z (2015) Hybrid NiCoOx adjacent to Pd nanoparticles as a synergistic electrocatalyst for ethanol oxidation. J Power Sources 273:631–637. https://doi.org/10.1016/j.jpowsour.2014.09.120

    Article  CAS  Google Scholar 

  20. Yang Y, Wang Y, Wang F, Liu Y, Dan C, Lei Z (2015) Partially oxidized NiFe alloy: an effective promoter to enhance Pd electrocatalytic performance for ethylene glycol oxidation. Int J Hydrog Energy 40(36):12262–12267. https://doi.org/10.1016/j.ijhydene.2015.07.059

    Article  CAS  Google Scholar 

  21. Al-Enizi AM, Ghanem MA, El-Zatahry AA, Al-Deyab SS (2014) Nickel oxide/nitrogen doped carbon nanofibers catalyst for methanol oxidation in alkaline media. Electrochim Acta 137:774–780. https://doi.org/10.1016/j.electacta.2014.05.150

    Article  CAS  Google Scholar 

  22. CD G, Huang ML, Ge X, Zheng H, Wang XL, JP T (2014) NiO electrode for methanol electro-oxidation: mesoporous vs. nanoparticulate. Int J Hydrog Energy 39:10892–10901

    Article  CAS  Google Scholar 

  23. Perales-Rondón JV, Ferre-Vilaplana A, Feliu JM, Herrero E (2014) Oxidation mechanism of formic acid on the bismuth adatom-modified Pt (111) surface. J Am Chem Soc 136(38):13110–13113. https://doi.org/10.1021/ja505943h

    Article  CAS  PubMed  Google Scholar 

  24. Liang S, Teng F, Bulgan G, Zong R, Zhu Y (2008) Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J Phys Chem C 112(14):5307–5315. https://doi.org/10.1021/jp0774995

    Article  CAS  Google Scholar 

  25. Xu Q, Yu J, Zhang J, Zhang J, Liu G (2015) Cubic anatase TiO2 nanocrystals with enhanced photocatalytic CO2 reduction activity. Chem Commun 51(37):7950–7953. https://doi.org/10.1039/C5CC01087J

    Article  CAS  Google Scholar 

  26. Zhou M, Xiao P, Guo W, Deng J, Liu F, Zhang Y (2014) Electrochemical synthesis of monodisperse nickel with predominant {111} orientation and high electro-oxidation activity for methanol. J Electrochem Soc 161(3):H133–H137. https://doi.org/10.1149/2.078403jes

    Article  CAS  Google Scholar 

  27. Zhao Y, Jia X, Chen G, Shang L, Waterhouse GI, LZ W, Tung CH, O’Hare D, Zhang T (2016) Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: an active water oxidation electrocatalyst. J Am Chem Soc 138(20):6517–6524. https://doi.org/10.1021/jacs.6b01606

    Article  CAS  PubMed  Google Scholar 

  28. Su D, Ford M, Wang G (2012) Mesoporous NiO crystals with dominantly exposed {110} reactive facets for ultrafast lithium storage. Sci Rep-UK 2

  29. Cuña A, Plascencia CR, da Silva EL, Marcuzzo J, Khan S, Tancredi N, Baldan MR, de Fraga Malfatti C (2017) Electrochemical and spectroelectrochemical analyses of hydrothermal carbon supported nickel electrocatalyst for ethanol electro-oxidation in alkaline medium. Appl Catal B-Environ 202:95–103. https://doi.org/10.1016/j.apcatb.2016.08.063

    Article  CAS  Google Scholar 

  30. Qin YH, Xiong ZY, Ma J, Yang L, Wu Z, Feng W, Wang TL, Wang WG, Wang CW (2017) Enhanced electrocatalytic activity and stability of Pd nanoparticles supported on TiO2-modified nitrogen-doped carbon for ethanol oxidation in alkaline media. Int J Hydrogen Energ 42(2):1103–1112. https://doi.org/10.1016/j.ijhydene.2016.09.060

    Article  CAS  Google Scholar 

  31. Rizo R, Sebastián D, Rodríguez JL, Lázaro MJ, Pastor E (2017) Influence of the nature of the carbon support on the activity of Pt/C catalysts for ethanol and carbon monoxide oxidation. J Catal 348:22–28. https://doi.org/10.1016/j.jcat.2017.02.007

    Article  CAS  Google Scholar 

  32. Shi W, Wang Q, Qin F, Yu J, Jia M, Gao H, Zhang Y, Zhao Y, Li G (2017) N-doped carbon encapsulated nickel nanoparticles: rational fabrication and ultra-high performance for ethanol oxidation. Electrochim Acta 232:332–338. https://doi.org/10.1016/j.electacta.2017.02.164

    Article  CAS  Google Scholar 

  33. Ajayan PM, Stephan O, Redlich P, Colliex C (1995) Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. Nature 375(6532):564–567. https://doi.org/10.1038/375564a0

    Article  CAS  Google Scholar 

  34. Chen SG, Yang RT, Kapteijn F, Moulijn JA (1993) A new surface oxygen complex on carbon: toward a unified mechanism for carbon gasification reactions. Ind Eng Chem Res 32(11):2835–2840. https://doi.org/10.1021/ie00023a054

    Article  CAS  Google Scholar 

  35. Ōya A, Ōtani S (1979) Effects of particle size of calcium and calcium compounds on catalytic graphitization of phenolic resin carbon. Carbon 17(2):125–129. https://doi.org/10.1016/0008-6223(79)90019-8

    Article  Google Scholar 

  36. Ōya A, Mochizuki M, Ōtani S, Tomizuka I (1979) An electron microscopic study on the turbostratic carbon formed in phenolic resin carbon by catalytic action of finely dispersed nickel. Carbon 17(1):71–76. https://doi.org/10.1016/0008-6223(79)90072-1

    Article  Google Scholar 

  37. Ōya A, Ōtani S (1979) Catalytic graphitization of carbons by various metals. Carbon 17(2):131–137. https://doi.org/10.1016/0008-6223(79)90020-4

    Article  Google Scholar 

  38. Smigelskas AD, Kirkendall EO (1947) Zinc diffusion in alpha brass. Trans AIME 171:130–142

    Google Scholar 

  39. Kofstad P (1996) High temperature oxidation of metals. John Wiley & Sons Inc, New York, p 340

    Google Scholar 

  40. Nakamura R, Lee JG, Mori H, Nakajima H (2008) Oxidation behaviour of Ni nanoparticles and formation process of hollow NiO. Philos Mag 88(2):257–264. https://doi.org/10.1080/14786430701819203

    Article  CAS  Google Scholar 

  41. Cui X, Guo W, Zhou M, Yang Y, Li Y, Xiao P, Zhang Y, Zhang X (2014) Promoting effect of Co in NimCon (m+n=4) bimetallic electrocatalysts for methanol oxidation reaction. ACS Appl Mater Inter 7:493–503

    Article  CAS  Google Scholar 

  42. Visscher W, Barendrecht E (1983) Anodic oxide films of nickel in alkaline electrolyte. Surf Sci 135(1-3):436–452. https://doi.org/10.1016/0039-6028(83)90235-2

    Article  CAS  Google Scholar 

  43. De Souza LMM, Kong FP, McLarnon FR, Muller RH (1997) Spectroscopic ellipsometry study of nickel oxidation in alkaline solution. Electrochim Acta 42(8):1253–1267. https://doi.org/10.1016/S0013-4686(96)00298-8

    Article  Google Scholar 

  44. Shi W, Gao H, Yu J, Jia M, Dai T, Zhao Y, Xu J, Li G (2016) One-step synthesis of N-doped activated carbon with controllable Ni nanorods for ethanol oxidation. Electrochim Acta 220:486–492. https://doi.org/10.1016/j.electacta.2016.10.051

    Article  CAS  Google Scholar 

  45. Soliman AB, Abdel-Samad HS, Rehim SSA, Ahmed MA, Hassan HH (2016) High performance nano-Ni/graphite electrode for electro-oxidation in direct alkaline ethanol fuel cells. J Power Sources 325:653–663. https://doi.org/10.1016/j.jpowsour.2016.06.088

    Article  CAS  Google Scholar 

  46. Wang J, Teschner D, Yao Y, Huang X, Willinger M, Shao L, Schlögl R (2017) Fabrication of nanoscale NiO/Ni heterostructures as electrocatalysts for efficient methanol oxidation. J Mater Chem A 5(20):9946–9951. https://doi.org/10.1039/C7TA01982C

    Article  CAS  Google Scholar 

  47. Zhang Y, Jia M, Gao H, Yu J, Wang L, Zou Y, Qin F, Zhao Y (2015) Porous hollow carbon spheres: facile fabrication and excellent supercapacitive properties. Electrochim Acta 184:32–39. https://doi.org/10.1016/j.electacta.2015.10.042

    Article  CAS  Google Scholar 

  48. Liu D, Lu W, Wang K, Du G, Asiri AM, Lu Q, Sun X (2016) Cobalt phosphide nanowall array as an efficient 3D catalyst electrode for methanol electro-oxidation. Nanotechnology 27:44LT02

    Article  CAS  PubMed  Google Scholar 

  49. Asgari M, Maragheh MG, Davarkhah R, Lohrasbi E (2011) Methanol electrooxidation on the nickel oxide nanoparticles/multi-walled carbon nanotubes modified glassy carbon electrode prepared using pulsed electrodeposition. J Electrochem Soc 158(12):K225–K229. https://doi.org/10.1149/2.055112jes

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Foundations of Tianjin (No:.14JCYBJC17500, 15JCQNJC05700, and 17JCQNJC06100) and the Natural Science Foundations of China (No. 21271138 and 21703152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Yu.

Electronic supplementary material

ESM 1

(DOC 3334 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Cao, Y., Li, J. et al. Preparation of Ni/NiO-C catalyst with NiO crystal: catalytic performance and mechanism for ethanol oxidation in alkaline solution. Ionics 24, 2745–2752 (2018). https://doi.org/10.1007/s11581-017-2414-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2414-1

Keywords

Navigation