Skip to main content
Log in

Enhanced electrochemical performance of lithium ion battery cathode Li3V2(PO4)3/C

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Li-ion battery cathode material lithium-vanadium-phosphate Li3V2(PO4)3 was synthesized by a carbon-thermal reduction method, using stearic acid, LiH2PO4, and V2O5 as raw materials. And stearic acid acted as reductant, carbon source, and surface active agent. The effect of its content on the crystal structure and electrochemical performance of Li3V2(PO4)3/C were characterized by XRD and electrochemical performance testing, respectively. The results showed that the content of carbon source has no significant effect on the crystal structure of lithium vanadium phosphate. Lihtium vanadium phosphate obtained with 12.3% stearic acid demonstrated the best electrochemical properties with a typical discharge capacity of 119.4 mAh/g at 0.1 C and capacity retention behavior of 98.5% after 50 cycles. And it has high reversible discharge capacity of 83 mAh/g at 5 C with the voltage window of 3 to 4.3 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) Mater Res Bull 15:783–789

    Article  CAS  Google Scholar 

  2. Guyomard D, Tarascon JM (1994) Solid State Ionics 69:222–237

    Article  CAS  Google Scholar 

  3. Rai AK, Thi TV, Gim J, Kim S, Kim J (2015) Ceram Int 41:389–393

    Article  CAS  Google Scholar 

  4. Wu Y, Tang ZY, Guo XY, Du CQ, Zhang Q (2014) J Alloys Compd 616:32–35

    Article  CAS  Google Scholar 

  5. Su JT, Su YC, Lai ZG, Fang HH (2008) Journal of Central South University (Science and Technology) 39:221–223

    CAS  Google Scholar 

  6. Ito S, Fujiki S, Yamada T, Aihara Y, Youngsin P, Tae YK, Baek SW, Lee JM (2014) J Power Sources 248:943–947

    Article  CAS  Google Scholar 

  7. Reddy MV, Rao GVS, Howdari BVRC (2007) J Phys Chem C 111:11712–11715

    Article  CAS  Google Scholar 

  8. Akao S, Yamada M, Kodera T (2011) Adv Mater Sci Eng 2011:1–6

    Article  Google Scholar 

  9. Patrick R, Marie TJ (2015) J Electrochem Soc 162:2490–2493

    Article  Google Scholar 

  10. Plashnitsa LS, Kobayashi E, Yoshinori N, Shigeto O, Yamaki JI (2010) J Electrochem Soc 157:536–537

    Article  Google Scholar 

  11. Sen UK, Sudeep S, Srinivas VP, Shivani S, Sagar M (2013) Nanoscience and Nanotechnology – Asia 3:21–24

    Article  CAS  Google Scholar 

  12. Tao D, Wang SP, Liu YC, Dai Y, Yu JX, Lei XR (2015) Ionics 21:1201–1239

    Article  CAS  Google Scholar 

  13. Rajagopalan R, Zhang L, Dou SX (2016) H Liu Advanced Energy Materials 6:1501760

    Article  Google Scholar 

  14. Xianhong R, Yan Q, Maria SK, Tuti Mariana L (2014) J Power Sources 258:19–22

    Article  Google Scholar 

  15. Zhang XF, Kühnel RS, Hu HT, Dominik E, Andrea B (2015) Nano Energy 12:207–210

    Article  CAS  Google Scholar 

  16. Wang LP, Xu J, Wang C, Cui X, Li J, Zhou YN (2015) RSC Adv 5:71684–71690

    Article  CAS  Google Scholar 

  17. Wang LP, Bai JM, Gao P, Wang XY, Looney JP, Wang F (2015) Chem Mater 27:5712–5718

    Article  CAS  Google Scholar 

  18. Yan HY, Chen WX, Wu XM, Sung YF (2014) Electrochim Acta 146:295–297

    Article  CAS  Google Scholar 

  19. Wang LJ, Liu HB, Tang ZY, Ma L, Zhang XH (2012) J Power Sources 204:197–120

    Article  CAS  Google Scholar 

  20. Rho YH, Nazar LF, Perry L, Ryan D (2007) J Electrochem Soc 154:A283–A289

    Article  CAS  Google Scholar 

  21. Kumar RA, Vu TT, Jihyeon G, Sungjin K, Jaekook K (2015) Ceram Int 41(1):389–393

    Article  Google Scholar 

  22. Cheng B, Zhang XD, Ma XH, Wen JW, Yu Y, Chen CH (2014) J Power Sources 265:104–107

    Article  CAS  Google Scholar 

  23. Mao WF, Zhang NN, Tang ZY, Feng YQ, Ma CX (2014) J Alloys Compd 588:25–27

    Article  CAS  Google Scholar 

  24. Rui XH, Li C (2010) Electrochim Acta 55(22):6761–6764

    Article  CAS  Google Scholar 

  25. Rui XH, Li C, Liu J, Cheng T, Chen CH (2014) J Power Sources 258:19–23

    Article  CAS  Google Scholar 

  26. Lin Y, Zeng BZ, Lin YB, Li XW, Zhao GY, Zhou T, Lai H, Huang ZG (2012) Rare Metals 31:145–147

    Article  CAS  Google Scholar 

  27. Wang RH, Li XH, Wang ZX, Guo HJ, Huang B (2015) Trans Nonferrous Metals Soc China 25:1241–1244

    Article  CAS  Google Scholar 

  28. Yan J, Tang ZY, Ren HX, Ma L (2012) Adv Mater Res 884:455–456

    Google Scholar 

  29. Hsu K-F, Tsay S-Y, Hwang B-J (2004) J Mater Chem 14:2690–2695

    Article  CAS  Google Scholar 

  30. Xie G, Zhu H-J, Liu X-M, Yang H (2013) Journal of Alloys & Compounds 574:155–160

    Article  CAS  Google Scholar 

  31. Chang CX, Xiang JF, Shi XX, Han XY, Yuan LJ, Sun JT (2008) Electrochim Acta 54:623–625

    Article  CAS  Google Scholar 

  32. Keliang W (2012) Ionics 18(1–2):55–58

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Program for New Century Excellent Talents in University (No. NCET-10-0946), Science and Technology Innovation Research Team Construction Project of Sichuan Province (No. 2011JTD0039, No. 2015TD00008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xumei Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Liu, T., Zhang, X. et al. Enhanced electrochemical performance of lithium ion battery cathode Li3V2(PO4)3/C. Ionics 23, 3289–3293 (2017). https://doi.org/10.1007/s11581-017-2128-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2128-4

Keywords

Navigation