Skip to main content

Advertisement

Log in

Influence of graphene coating on supercapacitive behavior of sandwich-like N- and O-enriched porous carbon/graphene composites in aqueous and organic electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Polyacrylonitrile nanofiber cloth coated with graphene oxide was carbonized and activated to fabricate nitrogen- and oxygen-enriched porous carbon/graphene (NAC@Gr) sandwich-like composites. The influence of graphene coating on the microstructure, surface composition, and supercapacitive performance of the as-prepared composites was investigated. The results indicated that significantly enhanced energy storage capability can be achieved due to the high specific surface area, optimized pore structure, and surface functionality. The composites show both high gravimetric and volumetric specific capacitances, for example, 380 F g−1 (178 F cm−3) at 0.1 A g−1 in 6 M KOH and 228 F g−1 (125 F cm−3) at 1 A g−1 in 1 M TEABF4/AN electrolyte. The assembled symmetric supercapacitors exhibit high energy density, high power density, excellent cycling stability, and high-rate performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Plenum Press, New York

    Book  Google Scholar 

  2. Yu A (2013) Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications. Taylor & Francis, Boca Raton

    Google Scholar 

  3. Li X, Xing W, Zhuo S, Zhou J, Li F, Qiao S-Z, Lu G-Q (2011) Bioresour Technol 102:1118–1123

    Article  CAS  Google Scholar 

  4. Burke A (2007) Electrochim Acta 53:1083–1091

    Article  CAS  Google Scholar 

  5. Béguin F, Frackowiak Ez (2010) Carbons for electrochemical energy storage and conversion systems. CRC Press, Boca Raton

    Google Scholar 

  6. Rufford TE, Hulicova-Jurcakova D, Fiset E, Zhu Z, Lu GQ (2009) Electrochem Commun 11:974–977

    Article  CAS  Google Scholar 

  7. Van Aken KL, Beidaghi M, Gogotsi Y (2015) Angew Chem Int Ed 54:4806–4809

    Article  CAS  Google Scholar 

  8. Pell WG, Conway BE (2004) J Power Sources 136:334–345

    Article  CAS  Google Scholar 

  9. Demarconnay L, Raymundo-Piñero E, Béguin F (2011) J Power Sources 196:580–586

    Article  CAS  Google Scholar 

  10. Xu C, Xu B, Gu Y, Xiong Z, Sun J, Zhao XS (2013) Energ Environ Sci 6:1388–1414

    Article  CAS  Google Scholar 

  11. Salunkhe RR, Lee Y-H, Chang K-H, Li J-M, Simon P, Tang J, Torad NL, Hu C-C, Yamauchi Y (2014) Chem – Euro J 20:13838–13852

    Article  CAS  Google Scholar 

  12. Zhu J, Yang D, Yin Z, Yan Q, Zhang H (2014) Small 10:3480–3498

    Article  CAS  Google Scholar 

  13. Lee JH, Park N, Kim BG, Jung DS, Im K, Hur J, Choi JW (2013) ACS Nano 7:9366–9374

    Article  CAS  Google Scholar 

  14. Peng Y-Y, Liu Y-M, Chang J-K, Wu C-H, Ger M-D, Pu N-W, Chang C-L (2015) Carbon 81:347–356

    Article  CAS  Google Scholar 

  15. Hassan FM, Chabot V, Li J, Kim BK, Ricardez-Sandoval L, Yu A (2013) J Mater Chem A 1:2904–2912

    Article  CAS  Google Scholar 

  16. Jin Y, Chen H, Chen M, Liu N, Li Q (2013) ACS Appl Mater Interfaces 5:3408–3416

    Article  CAS  Google Scholar 

  17. Chen S, Zhu J, Wu X, Han Q, Wang X (2010) ACS Nano 4:2822–2830

    Article  CAS  Google Scholar 

  18. Shang Y, Yu Z, Xie C, Xie Q, Wu S, Zhang Y, Guan Y (2015) J Solid State Electrochem 19:949–956

    Article  CAS  Google Scholar 

  19. Zhou Z, Wu X-F (2013) J Power Sources 222:410–416

    Article  CAS  Google Scholar 

  20. Xie Q, Zheng A, Zhai S, Wu S, Xie C, Zhang Y, Guan Y (2016) J Solid State Electrochem 20:449–457

    Article  CAS  Google Scholar 

  21. Lv Y, Gan L, Liu M, Xiong W, Xu Z, Zhu D, Wright DS (2012) J Power Sources 209:152–157

    Article  CAS  Google Scholar 

  22. Yang C-S, Jang YS, Jeong HK (2014) Curr Appl Phys 14:1616–1620

    Article  Google Scholar 

  23. Raymundo-Piñero E, Cadek M, Béguin F (2009) Adv Funct Mater 19:1032–1039

    Article  Google Scholar 

  24. Xie Q, Zhou S, Zheng A, Xie C, Yin C, Wu S, Zhang Y, Zhao P (2016) Electrochim Acta 189:22–31

    Article  CAS  Google Scholar 

  25. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  26. Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK, Choi JW (2011) Nano Lett 11:2472–2477

    Article  CAS  Google Scholar 

  27. Guo C, Li N, Ji L, Li Y, Yang X, Lu Y, Tu Y (2014) J Power Sources 247:660–666

    Article  CAS  Google Scholar 

  28. Wei T, Wei X, Gao Y, Li H (2015) Electrochim Acta 169:186–194

    Article  CAS  Google Scholar 

  29. Ra EJ, Raymundo-Piñero E, Lee YH, Béguin F (2009) Carbon 47:2984–2992

    Article  CAS  Google Scholar 

  30. Ania CO, Khomenko V, Raymundo-Piñero E, Parra JB, Béguin F (2007) Adv Funct Mater 17:1828–1836

    Article  CAS  Google Scholar 

  31. Hulicova-Jurcakova D, Kodama M, Shiraishi S, Hatori H, Zhu ZH, Lu GQ (2009) Adv Funct Mater 19:1800–1809

    Article  CAS  Google Scholar 

  32. Su DS, Schlögl R (2010) ChemSusChem 3:136–168

    Article  CAS  Google Scholar 

  33. Wang L-h, Toyoda M, Inagaki M (2008) New Carbon Mater 23:111–115

    Article  CAS  Google Scholar 

  34. Xie Q, Bao R, Xie C, Zheng A, Wu S, Zhang Y, Zhang R, Zhao P (2016) J Power Sources 317:133–142

    Article  CAS  Google Scholar 

  35. Yun YS, Cho SY, Shim J, Kim BH, Chang S-J, Baek SJ, Huh YS, Tak Y, Park YW, Park S, Jin H-J (2013) Adv Mater 25:1993–1998

    Article  CAS  Google Scholar 

  36. He X, Ling P, Qiu J, Yu M, Zhang X, Yu C, Zheng M (2013) J Power Sources 240:109–113

    Article  CAS  Google Scholar 

  37. Zhao Y-Q, Lu M, Tao P-Y, Zhang Y-J, Gong X-T, Yang Z, Zhang G-Q, Li H-L (2016) J Power Sources 307:391–400

    Article  CAS  Google Scholar 

  38. Wang D, Fang G, Xue T, Ma J, Geng G (2016) J Power Sources 307:401–409

    Article  CAS  Google Scholar 

  39. Wang X, Zhang Y, Zhi C, Wang X, Tang D, Xu Y, Weng Q, Jiang X, Mitome M, Golberg D, Bando Y (2013) Nat Commun 4:2905

    Google Scholar 

  40. Zhang J, Zhang X, Zhou Y, Guo S, Wang K, Liang Z, Xu Q (2014) ACS Sustain Chem Eng 2:1525–1533

    Article  Google Scholar 

  41. Le LT, Ervin MH, Qiu H, Fuchs BE, Lee WY (2011) Electrochem Commun 13:355–358

    Article  CAS  Google Scholar 

  42. Zhao Q, Wang X, Liu J, Wang H, Zhang Y, Gao J, Lu Q, Zhou H (2015) Electrochim Acta 154:110–118

    Article  CAS  Google Scholar 

  43. Zhou J, Zhang Z, Xing W, Yu J, Han G, Si W, Zhuo S (2015) Electrochim Acta 153:68–75

    Article  CAS  Google Scholar 

  44. Jiang X-F, Wang X-B, Dai P, Li X, Weng Q, Wang X, Tang D-M, Tang J, Bando Y, Golberg D (2015) Nano Energy 16:81–90

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge the financial support from the National Natural Science Foundation of China (21271107) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars from State Education Ministry ([2011]1568).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinxing Xie.

Electronic supplementary material

ESM 1

(DOC 407 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Xie, Q., Wu, S. et al. Influence of graphene coating on supercapacitive behavior of sandwich-like N- and O-enriched porous carbon/graphene composites in aqueous and organic electrolytes. Ionics 23, 1499–1507 (2017). https://doi.org/10.1007/s11581-017-1982-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-1982-4

Keywords

Navigation