Skip to main content
Log in

Improved supercapacitive performance of low pore size and highly stable nanostructured NiCo2O4 electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The nanostructured nickel cobaltite has been synthesized by a cost-effective facile hydrothermal method and demonstrated excellent electrochemical capacitive properties. The microstructural properties of as-synthesized nanostructured nickel cobaltite are probed with various analytical techniques, viz. XRD, XPS, BET, SEM, and TEM. A high-intensity (311) orientation along with other characteristic peaks observed in XRD spectrum corresponds to cubic spinel NiCo2O4 (NCO) phase with Fd\( \overline{3} \)m (227) symmetry. The NCO material is comprised of homogenous distribution of cuboid-shaped nanocrystalline particles as observed from TEM analysis. Brunauer-Emmett-Teller (BET) analysis evidenced that the prepared nickel cobaltite material possesses a high specific surface area 138 m2 g−1 with an average pore radius 4 nm. The high surface area and low average pore size generally offer more electroactive sites for Li-ion adsorption-desorption and avoid the stress upon the structure of the compound which resulted exemplary electrochemical performance. The NCO electrode delivered a superior specific capacitance of 2040 F g−1 at 1 A g−1 and retained 85.5% of its capacitance even after 5000 cycles. The desirable integrated quality such as long calendar life with high capacitance of the newly fabricated electrode enables it to be a promising material for high-performance supercapacitor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guo S, Dong S (2011) Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids and energy and analytical applications. Chem Soc Rev 40:2644–2672

    Article  CAS  PubMed  Google Scholar 

  2. Gonzalez EL, Llerena FI, Perez MS, Iglesias FR, Macho JG (2015) Energy evaluation of a solar hydrogen storage facility: comparison with other electrical energy storage technologies. Int J Hydrog Energy 40(15):5518–5525

    Article  Google Scholar 

  3. Saini SR, Meena SL, Meena RC (2017) Studies of surfactant in photo galvanic cell for solar energy conversion and storage. Adv Chem Eng Sci 07(02):125–136

    Article  CAS  Google Scholar 

  4. Rosen MA (2015) The prospects for renewable energy through hydrogen energy systems. JPEE 3(04):373–377

    Article  Google Scholar 

  5. Jiang H, Yang K, Ye P, Huang Q, Wang L, Li S (2018) Optimized NiCo2O4/rGO hybrid nanostructures on carbon fiber as an electrode for asymmetric supercapacitors. RSC Adv 8(65):37550–37556

    Article  CAS  Google Scholar 

  6. Fan Y, Ouyang D, Li BW, Dang F, Ren Z (2018) Two-dimensional VO2 mesoporous microarrays for high-performance supercapacitor. Nanoscale Res Lett 13:142

    Article  PubMed  PubMed Central  Google Scholar 

  7. Amir FZ, Pham VH, Dickerson JH (2015) Facile synthesis of ultra-small ruthenium oxide nanoparticles anchored on reduced graphene oxide nanosheets for high-performance supercapacitors. RSC Adv 5(83):67638–67645

    Article  CAS  Google Scholar 

  8. Gu J, Fan X, Liu X, Wang Z, Tang S, Yuan D (2017) Mesoporous manganese oxide with large specific surface area for high-performance asymmetric supercapacitor with enhanced cycling stability. ChemEng J324:35–43

    Google Scholar 

  9. Xiao H, Yao S, Liu H, Qu F, Zhang X, Wu X (2016) NiO nanosheet assembles for supercapacitor electrode materials. ProgNat Sci 26(3):271–275

    CAS  Google Scholar 

  10. Kandalkar SG, Dhawale DS, Kim C-K, Lokhande CD (2010) Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application. Synth Met 160(11-12):1299–1302

    Article  CAS  Google Scholar 

  11. Guruprakash N, Dhananjaya M, LakshmiNarayana A, Hussain OM, Srikanth VVSS (2019) Improved electrochemical performance of rGO-Wrapped MoO3nanocomposite for supercapaitors. Appl.Phys.A 125:488

    Article  Google Scholar 

  12. JayanthBabu K, Jeevan Kumar P, Hussain OM (2012) Microstructural and electrochemical properties ofrf-sputtered LiMn2O4 thin film cathodes. Appl.NanoSci. 2(4):401–407

    Article  CAS  Google Scholar 

  13. Li HB, Yu MH, Lu XH, Liu P, Liang Y, Xiao J, Tong YX, Yang GW (2014) Amorphous cobalt hydroxide with superior pseudocapacitive performance. ACS Appl Mater Interfaces 6(2):745–749

    Article  CAS  PubMed  Google Scholar 

  14. Zang X, Sun C, Dai Z, Yang J, Dong X (2017) Nickel hydroxide nanosheets supported on reduced graphene oxide for high-performance supercapacitors. J Alloys Compd 691:144–150

    Article  CAS  Google Scholar 

  15. Anandan S, Raj BGS, Lee G-J, Wu JJ (2013) Sonochemical synthesis of manganese (II) hydroxide for supercapacitor applications. Mater Res Bull 48(9):3357–3361

    Article  CAS  Google Scholar 

  16. Xia Q, Xu M, Xia H, Xie J (2016) Nanostructured iron oxide/hydroxide-based electrode materials for supercapacitors. Chem Nano Mat 2:588–600

    CAS  Google Scholar 

  17. Ho MY, Khiew PS, Chiu WS (2016) Green and facile synthesis of molybdenum oxide-graphene composite electrodes for supercapacitor application. Mater Sci Forum 863:90–94

    Article  Google Scholar 

  18. Liu S, Ni D, Li H-F, Hui KN, Ouyang C-Y, Jun SC (2018) Effect of cation substitution on the pseudo capacitive performance of spinel cobaltite MCo2O4 (M = Mn, Ni, Cu and Co). J Mater Chem A 6:10674–10685

    Article  CAS  Google Scholar 

  19. Salunkhe RR, Jang K, Yu H, Yu S, Ganesh T, Han S-H, Ahn H (2011) Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications. J AlloyCompd 509:6677–6682

    CAS  Google Scholar 

  20. Zha D, Fu Y, Gao X, Zhang L, Wang X (2017) Intimately coupled hybrid of carbon black/nickel cobaltite for supercapacitors with enhanced energy-storage properties and ultra-long cycle life. Electrochim Acta 257:494–503

    Article  CAS  Google Scholar 

  21. Wang H, Lu J, Yao S, Zhang W (2018) Sodium dodecyl sulfate-assisted synthesis of flower-like NiCo2O4 microspheres with large specific surface area for supercapacitors. J Alloy Compd 744:187–195

    Article  CAS  Google Scholar 

  22. Dubal DP, Gomez-Romero P, Sankapal BR, Holze R (2015) Nickel cobaltite as an emerging material for supercapacitors: An overview. Nano Energy 11:377–399

    Article  CAS  Google Scholar 

  23. Feaster JT, Shi C, Cave ER, Hatsukade T, Abram DN, Kuhl KP, Hahn C, Norskov JK, JaramilloTF (2017) Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal 7(7):4822–4827

    Article  CAS  Google Scholar 

  24. Wang H, Cui LF, Yang Y, Catalogue HS, Robinson JT, Liang Y, Yi C, Dai H (2010) Mn3O4−graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132(40):13978–13980

    Article  CAS  PubMed  Google Scholar 

  25. Wang H, Wang X (2013) Growing nickel cobaltite nanowires and nanosheets on carbon cloth with different pseudocapacitive performance. ACS Appl Mater Interfaces 5:56255–56260

    Google Scholar 

  26. Foo CY, Lim HN, Mahdi MAB, Chong KF, Huang NM (2016) High-performance supercapacitor based on three-dimensional hierarchical rGO/nickel cobaltite nanostructures as electrode materials. J Phys Chem C 120(38):21202–21210

    Article  CAS  Google Scholar 

  27. Garg N, Basu M, Ganguli AK (2014) Nickel cobaltite nanostructures with enhanced supercapacitance activity. J Phys Chem C 118(31):17332–17341

    Article  CAS  Google Scholar 

  28. Wang H, Holt CMB, Li Z, Tan X, Amirkhiz BS, Xu Z, Olsen BC, Stephenson T, Mitlin D (2012) Graphene–nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res 5(9):605–617

    Article  CAS  Google Scholar 

  29. Dong B, Zhang X, Xu X, Gao G, Ding S, Li J, Li B (2014) Preparation of scale-like nickel cobaltite nanosheets assembled on nitrogen-doped reduced graphene oxide for high-performance supercapacitors. Carbon 80:222–228

    Article  CAS  Google Scholar 

  30. Wang Q, Liu B, Wang X, Ran S, Wang L, Chen D, Shen G (2012) Morphology evolution of urchin-like NiCo2O4 nanostructures and their applications as psuedocapacitors and photoelectrochemical cells. J.Mater.Chem 22:21647–21653

    Article  CAS  Google Scholar 

  31. Naveen AN, Selladurai S (2015) Novel low temperature synthesis and electrochemical characterization of mesoporous nickel cobaltite-reduced graphene oxide (RGO) composite for supercapacitor application. Electrochim Acta 173:290–301

    Article  CAS  Google Scholar 

  32. Kim TH, Veerasubramani GK, Kim SJ (2018) Hierarchically porous flower-like nickel cobaltite nanosheets as a binder-less electrode for supercapacitor application with ultra-high capacitance. J Ind Eng Chem 61:181–187

    Article  CAS  Google Scholar 

  33. Yedluri AK, Kim HJ (2019) Enhanced electrochemical performance of nanoplate nickel cobaltite (NiCo2O4) supercapacitor applications. RSC Adv 9(2):1115–1122

    Article  CAS  Google Scholar 

  34. Kim JG, Pugmire DL, Battaglia D, Langell MA (2000) Analysis of the NiCo2O4 spinel surface with Auger and X-ray photoelectron spectroscopy. Appl Surf Sci 165(1):70–84

    Article  CAS  Google Scholar 

  35. Lai H, Shang L, Wu Q, Yang L, Zhao J, He L, Lyu Z, Wang X, Hu Z (2018) Spinel nickel cobaltite mesostructures assembled from ultrathin nanosheets for high-performance electrochemical energy storage. ACS Appl Energy Mater 1(2):684–691

    Article  CAS  Google Scholar 

  36. Kolathodi MS, Rao SNH, Natarajan TS, Singh G (2016) Beaded manganese oxide (Mn2O3) nanofibers: preparation and application for capacitive energy storage. JMater Chem A 4(20):7883–7891

    Article  CAS  Google Scholar 

  37. Lakshmi Narayana A, Dhananjaya M, Guru Prakash N, Hussain OM, Julien CM (2017) Nanocrystalline Li2TiO3 electrodes for supercapattery applications. Ionics 23(12):3419–3428

    Article  CAS  Google Scholar 

  38. Holland AW, Cruden A, Zerey A, Hector A, Wills RGA (2019) Electrochemical study of TiO2 in aqueous AlCl3 electrolyte via vacuum impregnation for superior high-rate electrode performance, Holland et al. BMC Energy 1(1):10

    Article  Google Scholar 

  39. Zhao Y, Li S, Wang C (2016) Manganous-manganic oxide @carbon core- shell nanorods for supercapacitors with high cycle retention. ECS J Solid State Sci Technol 5(2):M5–M11

    Article  CAS  Google Scholar 

  40. Liu X, Wang J, Yang G (2017) Transparent, flexible, and high-performance supercapacitor based on ultrafine nickel cobaltite nanospheres. Appl Phys A Mater Sci Process 123(7):469

    Article  Google Scholar 

  41. Shine J, Shin D, Wang HH, Yeo T, Park S, Choi W (2017) One-step transformation of MnO2 into MnO2-x @carbon nanostructures for high performance supercapacitors using structure guided combustion waves. J Mater Chem A 5(26):13488–13498

    Article  Google Scholar 

  42. Wei TY, Chen CH, Chien HC, Lu SY, Hu CC (2010) A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process. Adv Mater 22(3):347–351

    Article  CAS  PubMed  Google Scholar 

  43. Jadhav HS, Pawar SM, Jadhav AH, Thorat GM, Seo JG (2016) Hierarchical mesoporous 3D flower-like CuCo2O4/NF for high-performance electrochemical energy storage. Sci Rep 6(1):31120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pan Y, Zeng W, Li L, Zhang Y, Dong Y, Cao D, Wang G, Lucht BL, Ye K, Cheng K (2017) A facile synthesis of ZnCo2O4 nanocluster particles and the performance as anode materials for lithium ion batteries. NanomicroLett. 9:20

    Google Scholar 

  45. Lei Y, Li J, Wang Y, Gu L, Chang Y, Yuan H, Xiao D (2014) Rapid microwave-assisted green synthesis of 3D hierarchical flower-shaped NiCo2O4 microsphere for high-performance supercapacitor. ACS Appl Mater Interfaces 6(3):1773–1780

    Article  CAS  PubMed  Google Scholar 

  46. Wang L, Jiao X, Liu P, Ouyang Y, Xia X, Lei W, Hao Q (2018) Self-template synthesis of yolk-shelled NiCo2O4 spheres for enhanced hybrid supercapacitors. Appl Surf Sci 427:174–181

    Article  CAS  Google Scholar 

  47. Wang L, Wang X, Xiao X, Xu F, Sun Y, Li Z (2013) Reduced graphene oxide/nickel cobaltite nanoflake composites for high specific capacitance supercapacitors. Electrochim Acta 111:937–945

    Article  CAS  Google Scholar 

  48. Yao D, Ouyang Y, Jiao X, Ye H, Lei W, Xia X, Lu L, Hao Q (2018) Hierarchical NiO@NiCo2O4 core−shell nanosheet arrays on Ni foam for high-performance electrochemical supercapacitors. Ind Eng Chem Res 57(18):6246–6256

    Article  CAS  Google Scholar 

  49. Chen G, Gao Y, Zhang H (2016) Template-free synthesis of 3D hierarchical nanostructured NiCo2O4 mesoporous ultrathin nanosheet hollow microspheres for excellent methanol electro oxidation and supercapacitors. RSC Adv 6:30488–30497

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The technical support provided by Prof. M. V. Shankar, Department of Materials Science and Nanotechnology, Yogivemana University, Kadapa, is greatly acknowledged.

Funding

One of the authors N. Varalakshmi gratefully acknowledges the University Grants Commission for providing UGC-BSRFELLOWSHIP Letter No. F. 25-1/2014-15 (BSR)/7-187/2007(BSR) dated: 13-03-2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Y. Sreedhar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varalakshmi, N., Narayana, A.L., Hussain, O.M. et al. Improved supercapacitive performance of low pore size and highly stable nanostructured NiCo2O4 electrodes. J Solid State Electrochem 25, 1411–1420 (2021). https://doi.org/10.1007/s10008-021-04911-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-04911-3

Keywords

Navigation