Skip to main content
Log in

Synthesis of micro-FeTi powders by direct electrochemical reduction of ilmenite in CaCl2-NaCl molten salt

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Micro-ferrotitanium powders have been prepared by molten salt electrolysis via directly electrochemical reduction of solid ilmenite in eutectic CaCl2-NaCl melt at 973 K. In the direct electrochemical reduction process, the reduction of FeTiO3 first gives rise to the formation of Fe and CaTiO3, which as intermediates will be further deoxidized at the interface of iron metals, solid CaTiO3 matrix, and electrolyte to directly form ferrotitanium alloy powders in porous structure. Furthering the electrolytic time can promote the dense structure of ilmenite pellet turn to be more porous, indicating pores inside the pellet are sufficient for the diffusion of oxygen ions. Based on the reduction behavior of partially reduced powders in metallic cavity electrode during the cathodic potentiostatic electrolysis, it shows that the slow deoxidization rate is mainly caused by the more and more difficult reduction of CaTiO3 than that of FeTiO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tan S, Örs T, Aydinol MK, Öztürk T, Karakaya İ (2009) J Alloy Compd 475:368–372

    Article  CAS  Google Scholar 

  2. Wang D, Jin X, Chen GZ (2008) Annu Rep Prog Chem Sect C 104:189–234

    Article  CAS  Google Scholar 

  3. Zou X, Lu X, Zhou Z, Xiao W, Zhong Q, Li C, Ding W (2014) J Mater Chem A 2:7421–7430

    Article  CAS  Google Scholar 

  4. Descallar-Arriesgado RF, Kobayashi N, Kikuchi T, Suzuki RO (2011) Electrochim Acta 56:8422–8429

    Article  CAS  Google Scholar 

  5. Abdelkader AM, Kilby KT, Cox A, Fray DJ (2013) Chem Rev 113:2863–2886

    Article  CAS  Google Scholar 

  6. Xiao W, Jin X, Deng Y, Wang D, Hu X, Chen GZ (2006) ChemPhysChem 7:1750–1758

    Article  CAS  Google Scholar 

  7. Shi X, Jin X, Xiao W, Hou X, Chen H, Chen GZ (2011) Chem-Eur J 17:8562–8567

    Article  CAS  Google Scholar 

  8. Xu Y, Jiang H, Li X, Xiao H, Xiao W, Wu T (2014) J Mater Chem A 2:13345–13351

    Article  CAS  Google Scholar 

  9. Kai J, Hu X, Ma M, Dihua W, Guohong Q, Xianbo J, Chen GZ (2006) Angew Chem Int Edit 45:428–432

    Article  Google Scholar 

  10. Chen GZ (2015) Miner Process Extr M 124:96–105

    Article  CAS  Google Scholar 

  11. Fray DJ (2001) JOM 53:27–31

    Article  Google Scholar 

  12. Liu X, Hu M, Bai C, Lv X (2014) High Temp Mater-Isr 33:377–383

    CAS  Google Scholar 

  13. Rong L, He R, Wang Z, Peng J, Jin X, Chen GZ (2014) Electrochim Acta 147:352–359

    Article  CAS  Google Scholar 

  14. Hu M, Bai C, Liu X, Lv XI, Du J (2011) J Min Metall B 47:193–198

    Article  CAS  Google Scholar 

  15. Li G, Jin X, Wang D, Chen GZ (2009) J Alloy Compd 482:320–327

    Article  CAS  Google Scholar 

  16. Panigrahi M, Lizuka A, Shibata E, Nakamura T (2013) J Alloy Compd 550:545–552

    Article  CAS  Google Scholar 

  17. Chen ZY, Chou KC, Li FS (2013) J Manufac Sci Pro 13:127–131

    CAS  Google Scholar 

  18. Panigrahi M, Shibata E, Lizuka A, Nakamura T (2013) Electrochim Acta 93:143–151

    Article  CAS  Google Scholar 

  19. Castrillejo Y, Martínez AM, Haarberg GM, Børresen B, Osen KS, Tunold R (1997) Electrochim Acta 42:1489–1494

    Article  CAS  Google Scholar 

  20. Yan XY, Fray DJ (2005) J Electrochem Soc 152:D12–D21

    Article  CAS  Google Scholar 

  21. Xiao W, Jin X, Chen GZ (2013) J Mater Chem A 1:10243–10250

    Article  CAS  Google Scholar 

  22. Wang T, Gao H, Jin X, Chen H, Peng J, Chen GZ (2011) Electrochem Commun 13:1492–1495

    Article  CAS  Google Scholar 

  23. Wu T, Xiao W, Jin X, Liu C, Wang D, Chen GZ (2008) Phys Chem Chem Phys 10:1809–1818

    Article  CAS  Google Scholar 

  24. Dring K, Dahswodd RD, Inman D (2005) J Electrochem Soc 152:E104–E113

    Article  CAS  Google Scholar 

  25. Osarinmwian C, Roberts EPL, Mellor IM (2015) Chem Phys Lett 621:184–187

    Article  CAS  Google Scholar 

  26. Wang D, Qiu G, Jin X, Hu X, Chen GZ (2006) Angew Chem Int Edit 45:2384–2388

    Article  CAS  Google Scholar 

  27. Xiao W, Wang D (2014) Chem Soc Rev 43:3215–3228

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Project Nos. 51274108 and 21263007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixin Hua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Hua, Y., Xu, C. et al. Synthesis of micro-FeTi powders by direct electrochemical reduction of ilmenite in CaCl2-NaCl molten salt. Ionics 23, 213–221 (2017). https://doi.org/10.1007/s11581-016-1810-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1810-2

Keywords

Navigation