Skip to main content
Log in

Thio-oxynitride phosphate glass electrolytes prepared by mechanical milling

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Lithium thio-phosphorus oxynitride glasses, LiPOSN, have been prepared by mechanical milling process from the mixture of Li2S and LiPON glass. The anionic substitution of oxygen by sulphur and nitrogen in the phosphate glass structure has been confirmed by 1D 31P solid state nuclear magnetic resonance and x-ray photoelectron spectroscopy. The study of thermal and electrical properties reveals a decrease in the glass transition temperature, likely due to the depolymerization of glass network by the decrease of bridging oxygens and sulphurs, along with a sharp increase in the ionic conductivity when lithium sulphide is incorporated into the oxynitride glasses. The improvement of chemical durability by the introduction of nitrogen, together with the increase in ionic conductivity up to values closed to the value of commercial LiPON thin film electrolyte, suggests that these LiPOSN glasses could be good candidates as solid electrolytes for lithium microbatteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. Y. Ito, A. Sakuda, T. Ohtomo, A. Hayashi, and M. Tatsumisago: Preparation of Li2S–GeS2 solid electrolyte thin films using pulsed laser deposition. Solid State Ionics 236, 1 (2013).

    Article  CAS  Google Scholar 

  2. A. Sakuda, A. Hayashi, T. Ohtomo, S. Hama, and M. Tatsumisago: All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S–P2S5 solid electrolytes. J. Power Sources 196, 6735 (2011).

    Article  CAS  Google Scholar 

  3. Y. Sakurai, A. Sakuda, A. Hayashi, and M. Tatsumisago: Preparation of amorphous Li4SiO4–Li3PO4 thin films by pulsed laser deposition for all-solid-state lithium secondary batteries. Solid State Ionics 182, 59 (2011).

    Article  CAS  Google Scholar 

  4. I. Seo and S.W. Martin: Fast lithium ion conducting solid state thin-film electrolytes based on lithium thio-germanate materials. Acta Mater. 59, 1839 (2011).

    Article  CAS  Google Scholar 

  5. M. Yamashita and H. Yamanaka: Formation and ionic conductivity of Li2S–GeS2–Ga2S3 glasses and thin films. Solid State Ionics 158, 151 (2003).

    Article  CAS  Google Scholar 

  6. M. Tatsumisago, H. Morimoto, H. Yamashita, and T. Minami: Preparation of amorphous solid electrolytes in the system Li2S–SiS2–Li4SiO4 by mechanical milling. Solid State Ionics 136–137, 483 (2000).

    Article  Google Scholar 

  7. A. Hayashi, S. Hama, H. Morimoto, M. Tatsumisago, and T. Minami: Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling. J. Am. Ceram. Soc. 84, 477 (2001).

    Article  CAS  Google Scholar 

  8. J.E. Trevey, J.R. Gilsdorf, S.W. Miller, and S-H. Lee: Li2S–Li2O–P2S5 solid electrolyte for all-solid-state lithium batteries. Solid State Ionics 214, 25 (2012).

    Article  CAS  Google Scholar 

  9. J.E. Trevey, Y.S. Jung, and S-H. Lee: Preparation of Li2S–GeSe2–P2S5 electrolytes by a single step ball milling for all-solid-state lithium secondary batteries. J. Power Sources 195, 4984 (2010).

    Article  CAS  Google Scholar 

  10. M. Agostini, Y. Aihara, T. Yamada, B. Scrosati, and J. Hassoun: A lithium–sulfur battery using a solid, glass-type P2S5–Li2S electrolyte. Solid State Ionics 244, 48 (2013).

    Article  CAS  Google Scholar 

  11. F. Mizuno, A. Hayashi, K. Tadanaga, and M. Tatsumisago: New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses. Adv. Mater. 17, 918 (2005).

    Article  CAS  Google Scholar 

  12. M. Tatsumisago and A. Hayashi: Superionic glasses and glass-ceramics in the Li2S-P2S5 system for all-solid-state lithium secondary batteries. Solid State Ionics 225, 342 (2012).

    Article  CAS  Google Scholar 

  13. K. Minami, A. Hayashi, S. Ujiie, and M. Tatsumisago: Electrical and electrochemical properties of glass–ceramic electrolytes in the systems Li2S–P2S5–P2S3 and Li2S–P2S5–P2O5. Solid State Ionics 192, 122 (2011).

    Article  CAS  Google Scholar 

  14. T. Ohtomo, A. Hayashi, M. Tatsumisago, and K. Kawamoto: Characteristics of the Li2O–Li2S–P2S5 glasses synthesized by the two-step mechanical milling. J. Non-Cryst. Solids 364, 57 (2013).

    Article  CAS  Google Scholar 

  15. A. Le Sauze and R. Marchand: Chemically durable nitrided phosphate glasses resulting from nitrogen/oxygen substitution within PO4 tetrahedra. J. Non-Cryst. Solids 263–264, 285 (2000).

    Article  Google Scholar 

  16. M.R. Reidmeyer and D.E. Day: Phosphorus oxynitride glasses. J. Non-Cryst. Solids 181, 201 (1995).

    Article  CAS  Google Scholar 

  17. B. Wang, B.S. Kwak, B.C. Sales, and J.B. Bates: Ionic conductivities and structure of lithium phosphorus oxynitride glasses. J. Non-Cryst. Solids 183, 297 (1995).

    Article  CAS  Google Scholar 

  18. F. Muñoz, A. Durán, L. Pascual, L. Montagne, B. Revel, and A.C.M. Rodrigues: Increased electrical conductivity of LiPON glasses produced by ammonolysis. Solid State Ionics 179, 574 (2008).

    Article  Google Scholar 

  19. N. Mascaraque, J.L.G. Fierro, A. Durán, and F. Muñoz: An interpretation for the increase of ionic conductivity by nitrogen incorporation in LiPON oxynitride glasses. Solid State Ionics 233, 73 (2013).

    Article  CAS  Google Scholar 

  20. N. Mascaraque, H. Takebe, G. Tricot, J.L.G. Fierro, A. Durán, and F. Muñoz: Structure and electrical properties of a new thio-phosphorus oxynitride glass electrolyte. J. Non-Cryst. Solids 405, 159 (2014).

    Article  CAS  Google Scholar 

  21. F. Muñoz, L. Pascual, A. Durán, J. Rocherullé, and R. Marchand: Alkali and alkali-lead oxynitride phosphate glasses: A comparative structural study by NMR and XPS. C. R. Chim. 5, 731 (2002).

    Article  Google Scholar 

  22. C.D. Wagner, L.E. Davis, M.V. Zeller, J.A. Taylor, R.H. Raymond, and L.H. Gale: Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf. Interface Anal. 3, 211 (1981).

    Article  CAS  Google Scholar 

  23. A. Hayashi, R. Araki, K. Tadanaga, M. Tatsumisago, and T. Minami: High resolution solid state NMR studies of ionically conductive Li2S–SiS2–Li2O–P2O5 oxysulphide glasses. Phys. Chem. Glasses 40, 140 (1999).

    CAS  Google Scholar 

  24. K. Hirai, M. Tatsumisago, M. Takahashi, and T. Minami: 29Si and 31P MAS-NMR spectra of Li2S-SiS2-Li3PO4 rapidly quenched glasses. J. Am. Ceram. Soc. 79, 349 (1996).

    Article  CAS  Google Scholar 

  25. K. Minami, F. Mizuno, A. Hayashi, and M. Tatsumisago: Structure and properties of the 70Li2S (30-x)P2S5 xP2O5 oxysulfide glasses and glass–ceramics. J. Non-Cryst. Solids 354, 370 (2008).

    Article  CAS  Google Scholar 

  26. R.K. Brow: Review: The structure of simple phosphate glasses. J. Non-Cryst. Solids 263–264, 1 (2000).

    Article  Google Scholar 

  27. B.C. Bunker, D.R. Tallant, C.A. Balfe, R.J. Kirkpatrick, G.L. Turner, and M.R. Reidmeyer: Structure of phosphorus oxynitride glasses. J. Am. Ceram. Soc. 70, 675 (1987).

    Article  CAS  Google Scholar 

  28. A. Le Sauze, L. Montagne, G. Palavit, F. Fayon, and R. Marchand: X-ray photoelectron spectroscopy and nuclear magnetic resonance structural study of phosphorus oxynitride glasses, ‘LiNaPON’. J. Non-Cryst. Solids 263–264, 139 (2000).

    Article  Google Scholar 

  29. S. Veprek, S. Iqbal, L.J. Brunner, and M. Scharli: Preparation and properties of amorphous phosphorus nitride prepared in a low-pressure plasma. Philos. Mag. 43, 527 (1981).

    Article  CAS  Google Scholar 

  30. R. Marchand, D. Agliz, L. Boukbir, and A. Quemerais: Characterization of nitrogen containing phosphate glasses by X-ray photoelectron spectroscopy. J. Non-Cryst. Solids 103, 35 (1988).

    Article  CAS  Google Scholar 

  31. R.K. Brow, M.R. Reidmeyer, and D.E. Day: Oxygen bonding in nitrided sodium- and lithium-metaphosphate glasses. J. Non-Cryst. Solids 99, 178 (1988).

    Article  CAS  Google Scholar 

  32. R. Brückner, H-U. Chun, H. Goretzki, and M. Sammet: XPS measurements and structural aspects of silicate and phosphate glasses. J. Non-Cryst. Solids 42, 49 (1980).

    Article  Google Scholar 

  33. D. Foix, D. Gonbeau, G. Taillades, A. Pradel, and M. Ribes: The structure of ionically conductive chalcogenide glasses: A combined NMR, XPS and ab initio calculation study. Solid State Ionics 3, 235 (2001).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Financial support from project MAT2010-20459 is greatly acknowledged. N. Mascaraque thanks MEC ministry for funding of a FPU-2009 grant. María José de la Mata (SIDI-UAM) is also greatly acknowledged for her assistance in the NMR characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nerea Mascaraque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mascaraque, N., Fierro, J.L.G., Muñoz, F. et al. Thio-oxynitride phosphate glass electrolytes prepared by mechanical milling. Journal of Materials Research 30, 2940–2948 (2015). https://doi.org/10.1557/jmr.2015.128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.128

Navigation