Skip to main content
Log in

Highly dispersed ultrafine palladium nanoparticles on three-dimensional mesoporous carbon for formic acid electro-oxidation

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Highly dispersed ultrafine palladium nanoparticles have been uniformly decorated on a nano-CaCO3-templated three-dimensional mesoporous carbon (MC) matrix through a facile chemical reduction approach. Owing to its unique structural features, the as-prepared Pd/MC nanohybrid manifests markedly enhanced electrocatalytic performance in terms of catalytic activity and durability toward formic acid oxidation compared with conventional Pd/XC-72 electrocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yu X, Pickup P-G (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182:124–132

    Article  CAS  Google Scholar 

  2. Debe M-K (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51

    Article  CAS  Google Scholar 

  3. Antolini E (2009) Palladium in fuel cell catalysis. Energy Environ Sci 2:915–931

    Article  CAS  Google Scholar 

  4. Zhang H, Jin M, Xiong Y, Lim B, Xia Y (2013) Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc Chem Res 46:1783–1794

    Article  CAS  Google Scholar 

  5. Saldan I, Semenyuk Y, Marchuk I, Reshetnyak O (2015) Chemical synthesis and application of palladium nanoparticles. J Mater Sci 50:2337–2354

    Article  CAS  Google Scholar 

  6. Zhang X, Yin H, Wang J, Chang L, Gao Y, Liu W, Tang Z (2013) Shape-dependent electrocatalytic activity of monodispersed palladium nanocrystals toward formic acid oxidation. Nanoscale 5:8392–8397

    Article  CAS  Google Scholar 

  7. Wang X, Yang J, Yin H, Song R, Tang Z (2013) “Raisin bun”-like nanocomposites of palladium clusters and porphyrin for superior formic acid oxidation. Adv Mater 25:2728–2732

    Article  CAS  Google Scholar 

  8. Meng H, Xie F, Chen J, Shen P-K (2011) Electrodeposited palladium nanostructure as novel anode for direct formic acid fuel cell. J Mater Chem 21:11352–11358

    Article  CAS  Google Scholar 

  9. Chang J, Li S, Feng L, Qin X, Shao G (2014) Effect of carbon material on Pd catalyst for formic acid electrooxidation reaction. J Power Sources 266:481–487

    Article  CAS  Google Scholar 

  10. Huang Y, Zhou X, Liao J, Liu C, Lu T, Xing W (2008) Preparation of Pd/C catalyst for formic acid oxidation using a novel colloid method. Electrochem Commun 10:621–624

    Article  CAS  Google Scholar 

  11. Huang Y, Zhou X, Liao J, Liu C, Lu T, Xing W (2008) Synthesis of Pd/C catalysts with designed lattice constants for the electro-oxidation of formic acid. Electrochem Commun 10:1155–1157

    Article  CAS  Google Scholar 

  12. Bai Z, Niu L, Chao S, Yan H, Cui O, Yang L, Qiao J, Jiang K (2013) A facile preparation of palladium nanoclusters supported on hydroxypropyl-β-cyclodextrin modified fullerene [60] for formic acid oxidation. Int J Electrochem Sci 8:10068–10079

    CAS  Google Scholar 

  13. Chang J, Sun X, Feng L, Xing W, Qin X, Shao G (2013) Effect of nitrogen-doped acetylene carbon black supported Pd nanocatalyst on formic acid electrooxidation. J Power Sources 239:94–102

    Article  CAS  Google Scholar 

  14. Wang J-Y, Kang Y-Y, Yang H, Cai W-B (2009) Boron-doped palladium nanoparticles on carbon black as a superior catalyst for formic acid electro-oxidation. J Phys Chem C 113:8366–8372

    Article  CAS  Google Scholar 

  15. Guo Q, Liu D, Huang J, Hou H, You T (2014) A composite made from palladium nanoparticles and carbon nanofibers for superior electrocatalytic oxidation of formic acid. Microchim Acta 181:797–803

    Article  CAS  Google Scholar 

  16. Moghaddam RB, Pickup PG (2015) Formic acid oxidation at palladium nanoparticles supported on polyaniline modified carbon fibre paper. J Solid State Electrochem. doi:10.1007/s10008-014-2733-3

    Google Scholar 

  17. Bai Z, Yan H, Wang F, Yang L, Jiang K (2013) Electrooxidation of formic acid catalyzed by Pd nanoparticles supported on multi-walled carbon nanotubes with sodium oxalate. Ionics 19:543–548

    Article  CAS  Google Scholar 

  18. Yan H, Bai Z, Chao S, Cui Q, Niu L, Yang L, Qiao J, Jiang K (2014) Effects of additives on palladium nanocrystals supported on multiwalled carbon nanotubes and their electrocatalytic properties toward formic acid oxidation. Ionics 20:259–268

    Article  CAS  Google Scholar 

  19. Ma C, Jin Y, Shi M, Chu Y, Xu Y, Jia W, Yuan Q, Chen J, Pan H, Dai Q (2014) Highly active Pd/WO3-CNTs catalysts for formic acid electrooxidation and study of the kinetics. Ionics 20:1419–1426

    Article  CAS  Google Scholar 

  20. Yang S, Zhang X, Mi H, Ye X (2008) Pd nanoparticles supported on functionalized multi-walled carbon nanotubes (MWCNTs) and electrooxidation for formic acid. J Power Sources 175:26–32

    Article  CAS  Google Scholar 

  21. Yang S, Shen C, Lu X, Tong H, Zhu J, Zhang X, Gao H (2012) Preparation and electrochemistry of graphene nanosheets–multiwalled carbon nanotubes hybrid nanomaterials as Pd electrocatalyst support for formic acid oxidation. Electrochim Acta 62:242–249

    Article  CAS  Google Scholar 

  22. Yang S, Shen C, Liang Y, Tong H, He W, Shi X, Zhang X, Gao H (2011) Graphene nanosheets-polypyrrole hybrid material as a highly active catalyst support for formic acid electro-oxidation. Nanoscale 3:3277–3284

    Article  CAS  Google Scholar 

  23. Shi M, Liu W, Zhao D, Chu Y, Ma C (2014) Synthesis of palladium nanoparticles supported on reduced graphene oxide-tungsten carbide composite and the investigation of its performance for electrooxidation of formic acid. J Solid State Electrochem 18:1923–1932

    Article  CAS  Google Scholar 

  24. Qu K, Wu L, Ren J, Qu X (2012) Natural DNA-modified graphene-Pd nanoparticles as highly active catalyst for formic acid electro-oxidation and for the Suzuki reaction. ACS Appl Mater Interfaces 4:5001–5009

    Article  CAS  Google Scholar 

  25. Yang S, Dong J, Yao Z, Shen C, Shi X, Tian Y, Lin S, Zhang X (2014) One-pot synthesis of graphene-supported monodisperse Pd nanoparticles as catalyst for formic acid electro-oxidation. Sci Rep 4:4501

    Google Scholar 

  26. Maiyalagan T, Nassr A-B-A, Alaje T-O, Bron M, Scott K (2012) Three-dimensional cubic ordered mesoporous carbon (CMK-8) as highly efficient stable Pd electro-catalyst support for formic acid oxidation. J Power Sources 211:147–153

    Article  CAS  Google Scholar 

  27. Maiyalagan T, Alaje T-O, Scott K (2012) Highly stable Pt-Ru nanoparticles supported on three-dimensional cubic ordered mesoporous carbon (Pt-Ru/CMK-8) as promising electrocatalysts for methanol oxidation. J Phys Chem C 116:2630–2638

    Article  CAS  Google Scholar 

  28. Calvillo L, Lazaro M-J, Garcıa-Bordeje E, Moliner R, Cabot P-L, Esparb I, Pastor E, Quintana J-J (2007) Platinum supported on functionalized ordered mesoporous carbon as electrocatalyst for direct methanol fuel cells. J Power Sources 169:59–64

    Article  CAS  Google Scholar 

  29. Kim N-I, Cheon J-Y, Kim J-H, Seong J, Park J-Y, Joo S-H, Kwon K (2014) Impact of framework structure of ordered mesoporous carbons on the performance of supported Pt catalysts for oxygen reduction reaction. Carbon 72:354–364

    Article  CAS  Google Scholar 

  30. Xu B, Peng L, Wang G, Cao G, Wu F (2010) Easy synthesis of mesoporous carbon using nano-CaCO3 as template. Carbon 48:2361–2380

    Article  Google Scholar 

  31. Xu B, Shi L, Guo X, Peng L, Wang Z, Chen S, Cao G, Wu F, Yang Y (2011) Nano-CaCO3 templated mesoporous carbon as anode material for Li-ion batteries. Electrochim Acta 56:6464–6468

    Article  CAS  Google Scholar 

  32. Chen L, Wu P, Xie K, Li J, Xu B, Cao G, Chen Y, Tang Y, Zhou Y, Lu T, Yang Y (2013) FePO4 nanoparticles embedded in a large mesoporous carbon matrix as a high-capacity and high-rate cathode for lithium-ion batteries. Electrochim Acta 92:433–437

    Article  CAS  Google Scholar 

  33. Chen L, Wu P, Wang H, Ye Y, Xu B, Cao G, Chen Y, Zhou Y, Lu T, Yang Y (2014) Highly loaded SnO2/mesoporous carbon nanohybrid with well-improved lithium storage capability. J Power Sources 247:178–183

    Article  CAS  Google Scholar 

  34. Liang Y, Zhou Y, Ma J, Zhao J, Chen Y, Tang Y, Lu T (2011) Preparation of highly dispersed and ultrafine Pd/C catalyst and its electrocatalytic performance for hydrazine electrooxidation. Appl Catal B 103:388–396

    Article  CAS  Google Scholar 

  35. Zhao R, Fu G, Zhou T, Chen Y, Zhu X, Tang Y, Lu T (2014) Multi-generation overgrowth induced synthesis of three-dimensional highly branched palladium tetrapods and their electrocatalytic activity for formic acid oxidation. Nanoscale 6:2776–2781

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial supports from the National Natural Science Foundation of China (21273116, 21376122, and 51401110), the Natural Science Foundation of Jiangsu Province (BK20130900), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Zhu, X., Tang, Y. et al. Highly dispersed ultrafine palladium nanoparticles on three-dimensional mesoporous carbon for formic acid electro-oxidation. Ionics 21, 2609–2614 (2015). https://doi.org/10.1007/s11581-015-1445-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1445-8

Keywords

Navigation