Skip to main content
Log in

Atomic nickel on controllable mesoporous carbon nanospheres to boost electrochemical carbon dioxide reduction

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

One of the most effective methods for resolving the energy and environmental crises facing modern society is the electrocatalytic reduction of carbon dioxide. To achieve great energy efficiency and excellent selectivity for the target product, however, two internal difficulties must be overcome: the high energy barrier needed to activate carbon dioxide and the linear proportionate relationship between the combinations of intermediate adsorbents. A triazine-based controllable microporous carbon nanospheres supported metal monoatomic Ni electrocatalyst (Ni SACs/MC NPs) with clear and stable structure, high specific surface area, and integrated CO2 capture, and catalysis was created using a straightforward self-assembly strategy of aqueous lotion polymerization. This catalyst can function effectively in strong alkaline electrolytic solutions. The single-atom nickel loading amount is up to 15.38 wt%, which can show up to nearly 100% CO selectivity at ~ 200 mA cm−2 current. After more than 10 h of stability test, its catalytic performance has no obvious performance degradation, showing high stability. The excellent activity and stability of Ni-SACs/MC NPs can be attributed to the porous structure of the material, Ni metal single-atom and metal-carrier electronic effect (EMSI). The synthesis method of this material also provides a reference for the synthesis of other single-atom materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data would be available from the corresponding author upon reasonable request.

References

  1. Yue C, Wang W, Li F (2020) Building N-Heterocyclic carbene into triazine-linked polymer for multiple CO2 utilization. Chemsuschem 13:5996–6004. https://doi.org/10.1002/cssc.202002154

    Article  CAS  PubMed  Google Scholar 

  2. Birdja YY, Pérez-Gallent E, Figueiredo MC et al (2019) Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat Energy 4:732–745. https://doi.org/10.1038/s41560-019-0450-y

    Article  CAS  Google Scholar 

  3. Nam DH, De Luna P, Rosas-Hernandez A, Thevenon A, Li F, Agapie T, Peters JC, Shekhah O, Eddaoudi M, Sargent EH (2020) Molecular enhancement of heterogeneous CO2 reduction. Nat Mater 19:266–276. https://doi.org/10.1038/s41563-020-0610-2

    Article  CAS  PubMed  Google Scholar 

  4. Nguyen TN, Dinh CT (2020) Gas diffusion electrode design for electrochemical carbon dioxide reduction. Chem Soc Rev 49:7488–7504. https://doi.org/10.1039/D0CS00230E

    Article  CAS  PubMed  Google Scholar 

  5. Wagner A, Sahm CD, Reisner E (2020) Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat Catal 3:775–786. https://doi.org/10.1038/s41929-020-00512-x

    Article  CAS  Google Scholar 

  6. Gao D, Arán-Ais RM, Jeon HS, Roldan Cuenya B (2019) Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat Catal 2:198–210. https://doi.org/10.1038/s41929-019-0235-5

    Article  CAS  Google Scholar 

  7. Xiong L, Zhang X, Yuan H, Wang J, Yuan X, Lian Y, Jin H, Sun H, Deng Z, Wang D, Hu J, Hu H, Choi J, Li J, Chen Y, Zhong J, Guo J, Rümmerli MH, Xu L, Peng Y (2021) Breaking the linear scaling relationship by compositional and structural crafting of ternary Cu-Au/Ag nanoframes for electrocatalytic ethylene production. Angew Chem Int Ed Engl 60(5):2508–2518. https://doi.org/10.1002/anie.202012631

    Article  CAS  PubMed  Google Scholar 

  8. Xiong L, Zhang X, Chen L, Deng Z, Han S, Chen Y, Zhong J, Sun H, Lian Y, Yang B, Yuan X, Yu H, Liu Y, Yang X, Guo J, Rümmeli MH, Jiao Y, Peng Y (2021) Geometric modulation of local CO flux in Ag@Cu2O nanoreactors for steering the CO2RR pathway toward high-efficacy methane production. Adv Mater 33(32):e2101741. https://doi.org/10.1002/adma.202101741

    Article  CAS  PubMed  Google Scholar 

  9. Lu X-L, Rong X, Zhang C, Lu T-B (2020) Carbon-based single-atom catalysts for CO2 electroreduction: progress and optimization strategies. J Mater Chem A 8:10695–10708. https://doi.org/10.1039/D0TA01955K

    Article  CAS  Google Scholar 

  10. Zhu Y, Yang X, Peng C, Priest C, Mei Y, Wu G (2021) Carbon-supported single metal site catalysts for electrochemical CO2 reduction to CO and beyond. Small 17(16):e2005148. https://doi.org/10.1002/smll.202005148

    Article  CAS  PubMed  Google Scholar 

  11. Zhu C, Fu S, Shi Q, Du D, Lin Y (2017) Single-atom electrocatalysts. Angew Chem 56(45):13944–13960. https://doi.org/10.1002/anie.201703864

    Article  CAS  Google Scholar 

  12. Xia C, Qiu Y, Xia Y et al (2021) General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat Chem 13:887–894. https://doi.org/10.1038/s41557-021-00734-x

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Q, Guan J (2022) Applications of single-atom catalysts. Nano Res 15:38–70. https://doi.org/10.1007/s12274-021-3479-8

    Article  CAS  Google Scholar 

  14. Mitchell S, Vorobyeva E, Perez-Ramirez J (2018) The multifaceted reactivity of single-atom heterogeneous catalysts. Angew Chem Int Ed Engl 57:15316–15329. https://doi.org/10.1002/anie.201806936

    Article  CAS  PubMed  Google Scholar 

  15. Liu J (2017) Catalysis by supported single metal atoms. ACS Catal 7:34–59. https://doi.org/10.1021/acscatal.6b01534

    Article  CAS  Google Scholar 

  16. Qiao B, Wang A, Yang X et al (2011) Single-atom catalysis of CO oxidation using Pt1/FeOX. Nat Chem 3:634–641. https://doi.org/10.1038/nchem.1095

    Article  CAS  PubMed  Google Scholar 

  17. Yang H, Hung SF, Liu S et al (2018) Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat Energy 3:140–147. https://doi.org/10.1038/s41560-017-0078-8

    Article  CAS  Google Scholar 

  18. Ting H (2019) Controllable preparation and electrocatalytic hydrogen evolution performance of nickel-based nanomaterials. Huazhong Univ Sci Technol. https://doi.org/10.27157/d.cnki.ghzku.2019.001315

    Article  Google Scholar 

  19. Li Z, He D, Yan X et al (2020) Size-dependent Ni-based electrocatalysts for selective CO2 reduction. Angew Chem 59:18572–18577. https://doi.org/10.1002/anie.202000318

    Article  CAS  Google Scholar 

  20. Chen Y, Lin J, Baohua J et al (2022) Isolating single and few atoms for enhanced catalysis. Advanced materials 34(39). https://doi.org/10.1002/adma.202201796

  21. Song Z, Zhang L, Doyleâ-Davis et al (2020) Recent advances in Mof-derived single atom catalysts for electrochemical applications. Adv Energy Mater 2001561–. https://doi.org/10.1002/aenm.202001561

  22. Zhang L, Feng J, Liu S, Tan X, Wu L, Jia S, Xu L, Ma X, Song X, Ma J, Sun X, Han B (2023) Atomically dispersed Ni–Cu catalysts for pH-universal CO2 electroreduction. Adv Mater 29. https://doi.org/10.1002/adma.202209590

  23. Li H, Li H, Wei P, Wang Y, Zang Y, Gao D, Wang G, Bao X (2023) Tailoring acidic microenvironments for carbon-efficient CO2 electrolysis over a Ni-N-C catalyst in a membrane electrode assembly electrolyzer. Energy Environ Sci 16:1502. https://doi.org/10.1039/D2EE03482D

    Article  CAS  Google Scholar 

  24. Jiang K, Siahrostami S, Zheng T, Hu Y, Hwang S, Stavitski E, Peng Y, Dynes J, Gangisetty M, Su D, Attenkofer K, Wang H (2018) Isolated Ni single-atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ Sci 11:893–903. https://doi.org/10.1039/C7EE03245E

    Article  CAS  Google Scholar 

  25. Tiwari D, Goel C, Bhunia H, Bajpai PK (2017) Melamine-formaldehyde derived porous carbons for adsorption of CO2 capture. J Environ Manage 197:415–427. https://doi.org/10.1016/j.jenvman.2017.04.013

    Article  CAS  PubMed  Google Scholar 

  26. Cui H, Chen H, Guo Z, Xu J, Shen J (2020) Preparation of high surface area mesoporous melamine formaldehyde resins. Micropor Mesopor Mater 309. https://doi.org/10.1016/j.micromeso.2020.110591

  27. Guo D, Fu Y, Bu F, Liang H, Duan L, Zhao Z, Wang C, El-Toni AM, Li W, Zhao D (2021) Monodisperse ultrahigh nitrogen-containing mesoporous carbon nanospheres from melamine-formaldehyde resin. Small Methods 5:e2001137. https://doi.org/10.1002/smtd.202001137

    Article  CAS  PubMed  Google Scholar 

  28. Schwarz D, Weber J (2018) Organic-solvent free synthesis of mesoporous and narrow-dispersed melamine resin particles for water treatment applications. Polymer 155:83–88. https://doi.org/10.1016/j.polymer.2018.09.028

    Article  CAS  Google Scholar 

  29. Oya A, Otani S (1979) Catalytic graphitization of carbons by various metals. Carbon 17:131–137. https://doi.org/10.1016/0008-6223(79)90020-4

    Article  CAS  Google Scholar 

  30. Yang HP, Wu Y, Li GD, Lin Q, Hu Q, Zhang QL, Liu JH, He CX (2019) Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J Am Chem Soc 141:12717–12723. https://doi.org/10.1021/jacs.9b04907

    Article  CAS  PubMed  Google Scholar 

  31. Friedel B, Greulich-Weber S (2006) Preparation of monodisperse, submicrometer carbon spheres by pyrolysis of melamine-formaldehyde resin. Small 2:859–863. https://doi.org/10.1002/smll.200500516

    Article  CAS  PubMed  Google Scholar 

  32. Liu A, Zhang J, Lv X (2018) Novel hydrazine-bridged covalent triazine polymer for CO2 capture and catalytic conversion. Chin J Catal 39:1320–1328. https://doi.org/10.1016/s1872-2067(18)63040-2

    Article  CAS  Google Scholar 

  33. Gyoung HJ, Ying CT, Jun TS et al (2021) Synthetic multiscale design of nanostructured Ni single atom catalyst for superior CO2 electroreduction. Chem Eng J. https://doi.org/10.1016/J.CEJ.2021.131063

    Article  Google Scholar 

  34. Zhong G, Xu M, Xu S et al (2021) Green synthesis of iron and nitrogen co-doped porous carbon via pyrolysing lotus root as a high-performance electrocatalyst for oxygen reduction reaction. Int J Energy Res 45:10393–10408. https://onlinelibrary.wiley.com/doi/full/10.1002/er.6527. Accessed 2023. 07. 03

  35. Zhong G, Meng Z, Xu M et al (2022) Self-nitrogen-doped porous carbon prepared via pyrolysis of grass-blade without additive for oxygen reduction reaction. Diamond Relat Mater 121:108742. https://www.sciencedirect.com/science/article/pii/S0925963521005057. Accessed 2023.07.03

  36. Hua W, Sun H, Lin L, Mu Q, Yang B, Su Y, WH, Lyu F, Zhong J, Deng Z, Peng Y (2022) A hierarchical single-atom Ni-N3-C catalyst for electrochemical CO2 reduction to CO with Near-unity faradaic efficiency in a broad potential range. Chem Eng J 446:137296. https://www.sciencedirect.com/science/article/pii/S1385894722027851. Accessed 2023.07.03

  37. Wen CF, Mao F, Liu Y, Zhang XY, Huai Qin Fu, Zheng LR, Liu PF, Yang HG (2019) Nitrogen-stabilized low-valent Ni motifs for efficient CO2 electrocatalysis. ACS Catal 10(2):1086–1093. https://doi.org/10.1021/acscatal.9b02978

    Article  CAS  Google Scholar 

  38. Zhong G, Huang J, Yao Z et al (2020) Intrinsic acid resistance and high removal performance from the incorporation of nickel nanoparticles into nitrogen doped tubular carbons for environmental remediation. J Colloid Interface Sci 566:46–59. https://www.sciencedirect.com/science/article/pii/S0021979720300709. Accessed 2023.07.03

  39. Zhong G, Li S, Xu S et al (2018) Nickel nanoparticles encapsulated in nitrogen-doped carbon nanotubes as excellent bifunctional oxygen electrode for fuel cell and metal–air battery. ACS Sustain Chem Eng 11:15108–15118. https://pubs.acs.org/doi/full/10.1021/acssuschemeng.8b03582. Accessed 2023.07.03

  40. Caskey SR, Wong-Foy AG, Matzger AJ (2008) Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J Am Chem Soc 130:10870. https://doi.org/10.1021/ja8036096

    Article  CAS  PubMed  Google Scholar 

  41. An J, Geib SJ, Rosi NL (2010) High and selective CO2 uptake in a cobalt adeninate metal−organic framework exhibiting pyrimidine- and amino-decorated pores. J Am Chem Soc 132:38–39. https://doi.org/10.1021/ja909169x

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Z, Shen C, Sun K, Jia X, Ye J, Liu C (2022) Advances in studies of structural effect of the supported ni catalyst for CO2 hydrogenation: from nanoparticle to single-atom catalyst. J Mater Chem A 10:5792–5812. https://doi.org/10.1039/D1TA09914K

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Project Number 22109099, 22008155, 22278269 and 21975161), Industrial Collaborative Innovation Project of Shanghai (Project Number 2021-cyxt1-kj37 and XTCX-KJ-2022–70), “Chen Guang” project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (21CGA66), Shanghai Sailing Program No. 21YF1415400.

Author information

Authors and Affiliations

Authors

Contributions

Pu engaged in the material synthesis and characterization, as well as in the comprehensive revision of the manuscript. Zhang contributed to the initial draft preparation and conducted select synthesis experiments. Xiong provided pivotal experimental concepts and participated in the paper's overarching revision. Han, Ma, and Shi partook in the manuscript refinement process.

Corresponding authors

Correspondence to Da Shi, Sheng Han or Likun Xiong.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2477 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, X., Zhang, W., Ma, M. et al. Atomic nickel on controllable mesoporous carbon nanospheres to boost electrochemical carbon dioxide reduction. Ionics 29, 3683–3692 (2023). https://doi.org/10.1007/s11581-023-05095-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05095-8

Keywords

Navigation