Skip to main content
Log in

Voltammetric behavior and determination of antidepressant drug paroxetine at carbon-based electrodes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Simple, rapid, sensitive, and reproducible methods were developed for the assay of paroxetine in tablets. The electrooxidative behavior and determination of paroxetine on boron-doped diamond and edge plane graphite electrodes were investigated as details using cyclic, differential pulse, and square wave voltammetric methods. The oxidation process was irreversible and exhibited mixed diffusion-adsorption controlled process depending on pH. The dependence of the peak current and peak potentials on pH, nature of the buffer, and scan rate studies were examined as details. The linear responses have been obtained in the range from 7.0 × 10−7 M to 3.5 × 10−6 M with 6.95 × 10−9 M detection limit for the boron-doped diamond electrode and from 1.0 × 10−8 M to 5.0 × 10−6 M with 1.03 × 10−9 M detection limit for the edge plane graphite electrode. The possible electrooxidation mechanism of paroxetine was investigated by means of model compounds of tamsulosin and mebeverine. It can be suggested that alkoxybenzene moiety may be the responsible group for the oxidation of paroxetine (PRX). The developed methods have been successfully applied for the determination of paroxetine in pharmaceutical dosage form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Salgado-Petinal C, Lamas JP, Garcia-Jares C (2005) Rapid screening of selective serotonin reuptake inhibitors in urine samples using solid phase micro-extraction gas chromatography-mass spectrometry. J Anal Bioanal Chem 382:1351–1359

    Article  CAS  Google Scholar 

  2. Kaye CM, Haddock RE, Langley PF, Mellows G, Taker TCG, Zussman BD, Greb WH (1989) A review of the metabolism and pharmacokinetics of paroxetine in man. Acta Psychiatr Scand 80(suppl 350):60–75

    Article  Google Scholar 

  3. Foglia JP, Sorisio D, Kirshner M, Pollock BG (1997) Quantitative determination of paroxetine in plasma by high- performance liquid chromatography and ultraviolet detection. J Chromatogr B 693:147–151

    Article  CAS  Google Scholar 

  4. Knoeller J, Vogt-Schenkel R, Brett MA (1995) A simple and robust high-performance liquid chromatography method for the determination of paroxetine in human plasma. J Pharm Biomed Anal 13:635–638

    Article  CAS  Google Scholar 

  5. Kristoffersen L, Bugge A, Lundanes E, Slordal L (1999) Simultaneous determination of citalopram, fluoxetine, paroxetine and its metabolites in plasma and whole blood by high performance liquid chromatography with ultraviolet and fluorescence detection. J Chromatogr B 734:222–246

    Google Scholar 

  6. Athanasiou NV, Politou JA, Koupparis M, Spyropoulos J (2007) Development and validation of an HPLC method, with fluorescence detection, for simultaneous determination of paroxetine and its metabolites in plasma. J Liq Chromatogr Relat Technol 30:1641–1655

    Article  Google Scholar 

  7. Shin JG, Kim KA, Yoon YR, Cha IJ, Kim YH, Shin SG (1998) Rapid simple high performance liquid chromatographic determination of paroxetine in human plasma. J Chromatogr 713:452–456

    Article  CAS  Google Scholar 

  8. Brett MA, Dierdorf HD, Zussman BD, Coates PE (1987) Determination of paroxetine in human plasma, using high performance liquid chromatography with fluorescence detection. J Chromatogr Biomed Appl 63:438–444

    Article  Google Scholar 

  9. Lucca A, Gentilini G, Lopez-Silva S, Soldarini A (2000) Simultaneous determination of human plasma levels of four selective serotonin reuptake inhibitors by HPLC. Ther Drug Monit 22:271–276

    Article  CAS  Google Scholar 

  10. Lacassie E, Gaulier J-M, Marquet P, Rabatel J-F, Lachatre G (2000) Methods for the determination of seven selective serotonin reuptake inhibitors and three active metabolites in human serum using high-performance liquid chromatography and gas chromatography. J Chromatogr B 742:229–238

    Article  CAS  Google Scholar 

  11. Titier K, Castaing N, Scotto-Gomez E, Pehourcq F, Moore N, Molimard M (2003) High-performance liquid chromatographic method with diode array detection for identification and quantification of the eight new antidepressants and five of their active metabolites in plasma after overdose. Ther Drug Monit 25:581–587

    Article  CAS  Google Scholar 

  12. Duverneuil C, de la Grandmaison GL, de Mazancourt P, Alvarez JC (2003) A high performance liquid chromatography method with photo diode array UV detection for therapeutic drug monitoring of the nontricyclic antidepressant drugs. Ther Drug Monit 25:565–573

    Article  CAS  Google Scholar 

  13. Schatz DS, Saria A (2000) Simultaneous determination of paroxetine, risperidone and 9-hydroxyrisperidone in human plasma by high-performance liquid chromatography with coulometric detection. Pharmacology 60:51–56

    Article  CAS  Google Scholar 

  14. He J, Zhou ZL, Li HD (2005) Simultaneous determination of fluoxetine, citalopram, paroxetine, venlafaxine in plasma by high performance liquid chromatography electrospray ionization mass spectrometry. J Chromatogr B 820:33–39

    Article  Google Scholar 

  15. Naidong W, Eerkes A (2004) Development and validation of a hydrophilic interaction liquid chromatography-tandem mass spectrometric method for the analysis of paroxetine in human plasma. Biomed Chromatogr 18:28–36

    Article  CAS  Google Scholar 

  16. Leis HJ, Windischhofer W, Fauler G (2002) Improved sample preparation for the quantitative analysis of paroxetine in human plasma by stable isotope dilution negative ion chemical ionization gas chromatography–mass spectrometry. J Chromatogr B 779:353–357

    Article  CAS  Google Scholar 

  17. Wille SMR, Maudens KE, Van Peteghem CH, Lambert WEE (2005) Development of a solid phase extraction for 13 new generation antidepressants and their active metabolites for gas chromatographic-mass spectrometric analysis. J Chromatogr A 1098:1–2

    Article  Google Scholar 

  18. Flores JR, Nevado JJB, Salcedo AMC, Diaz MPC (2004) Non-aqueous capillary zone electrophoresis method for the analysis of paroxetine, tamoxifen, and their main metabolites in urine. Anal Chim Acta 512:287–295

    Article  CAS  Google Scholar 

  19. Flores JR, Nevado JJB, Salcedo AMC, Diaz MPC (2004) Development and validation method for determination of paroxetine and its metabolites by nonaqueous capillary electrophoresis in human urine. Experimental design for evaluating the ruggedness of the method. Electrophoresis 25:454–462

    Article  CAS  Google Scholar 

  20. Flores JR, Nevado JJB, Salcedo AMC, Diaz MPC (2004) Development of a capillary zone electrophoretic method to determine six antidepressants in their pharmaceutical preparations. Experimental design for evaluating the ruggedness of method. J Sep Sci 27:33–40

    Article  CAS  Google Scholar 

  21. Erk N, Biryol I (2003) Voltammetric and HPLC techniques for the determination of paroxetine hydrochloride. Pharmazie 58:699–704

    CAS  Google Scholar 

  22. Nouws HPA, Delerue-Matos C, Barros AA, Rodrigues JA (2006) Electroanalytical determination of paroxetine in pharmaceuticals. J Pharm Biomed Anal 42:341–346

    Article  CAS  Google Scholar 

  23. Zuman P (2006) Principles of applications of polarography and voltammetry in the analysis of drugs. FABAD J Pharm Sci 31:97–115

    Article  Google Scholar 

  24. McCreery RL (1999) Electrochemical properties of carbon surfaces. In: Wieckowski A (ed) Interfacial electrochemistry: theory: experiment, and applications. Marcel Dekker Inc, New York, pp 631–648

    Google Scholar 

  25. Uslu B, Ozkan SA (2007) Electroanalytical application of carbon based electrodes to the pharmaceuticals. Anal Lett 40:817–853

    Article  CAS  Google Scholar 

  26. Saberi R-S, Shahrokhian S (2012) Highly sensitive voltammetric determination of lamotrigine at highly oriented pyrolytic graphite electrode. Bioelectrochemistry 84:38–43

    Article  CAS  Google Scholar 

  27. Compton RG, Banks CE (2011) Understanding voltammetry, 2nd edn. Imperial College Press, London

    Book  Google Scholar 

  28. Shishmarev DS, Rees NV, Compton RG (2010) Enhanced performance of edge-plane pyrolytic graphite (EPPG) electrodes over glassy carbon (GC) electrodes in the presence of surfactants: application to the stripping voltammetry of copper. Electroanalysis 22:31–34

    Article  CAS  Google Scholar 

  29. Swain GM (2007) Solid electrode materials: pretreatment and activation. In: Zoski CG (ed) Handbook of electrochemistry. Elsevier, Amsterdam, pp 111–154

    Chapter  Google Scholar 

  30. Bozal-Palabiyik B, Kurbanoglu S, Gumustas M, Uslu B, Ozkan SA (2013) Electrochemical approach for the sensitive determination of anticancer drug epirubicin in pharmaceuticals in the presence of anionic surfactant. Rev Roum Chim 58:647–658

    CAS  Google Scholar 

  31. Dogan-Topal B, Kul D, Ozkan SA, Uslu B (2011) Anodic behaviour of fulvestrant and its voltammetric determination in pharmaceuticals and human serum on highly boron-doped diamond electrode using differential pulse adsorptive stripping voltammetry. J Appl Electrochem 41:1253–1260

    Article  CAS  Google Scholar 

  32. Altun Y, Uslu B, Ozkan SA (2010) Electroanalytical characteristics of lercanidipine and its voltammetric determination in pharmaceuticals and human serum on boron-doped diamond electrode. Anal Lett 43:1958–1975

    Article  CAS  Google Scholar 

  33. Uslu B, Canbaz D (2010) Anodic voltammetry of zolmitriptan at boron-doped diamond electrode and its analytical applications. Pharmazie 65:245–250

    CAS  Google Scholar 

  34. Dogan B, Tuncel S, Uslu B, Özkan SA (2007) Selective electrochemical behavior of highly conductive boron-doped diamond electrodes for fluvastatin sodium oxidation. Diam Relat Mater 16:1695–1704

    Article  CAS  Google Scholar 

  35. Gosser DK (1993) Cyclic voltammetry: simulation and analysis of reaction mechanisms. Wiley-VCH, USA

    Google Scholar 

  36. Greef R, Peat R, Peter LM, Pletcher D, Robinson J (1990) Instrumental methods in electrochemistry. Ellis Horwood, England

    Google Scholar 

  37. Ozkan SA, Uslu B, Aboul-Enein HY (2003) Voltammetric investigation of Tamsulosin. Talanta 61:147–156

    Article  CAS  Google Scholar 

  38. Satana HE, Dogan-Topal B, Ozkan SA (2011) Electrochemical characterization and rapid voltammetric determination of riluzole in pharmaceuticals and human serum. Anal Lett 44:976–990

    Article  CAS  Google Scholar 

  39. Grimshaw J (2000) Electrochemical reactions and mechanisms in organic chemistry, 1st edn. Elsevier Science Ltd., Amsterdam, p 201

    Google Scholar 

  40. Ozkan SA (2012) Electroanalytical methods in pharmaceutical analysis and their validation. HNB Publishing, New York

    Google Scholar 

  41. Lin H, Li G, Wu K (2008) Electrochemical determination of Sudan I using montmorillonite calcium modified carbon paste electrode. Food Chem 107:531–536

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Bengi Uslu wishes to extend their gratitude for the financial support of the Ankara University Department of Scientific Research Projects (Project No: 15H0237002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengi Uslu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brycht, M., Skrzypek, S., Karadas-Bakirhan, N. et al. Voltammetric behavior and determination of antidepressant drug paroxetine at carbon-based electrodes. Ionics 21, 2345–2354 (2015). https://doi.org/10.1007/s11581-015-1390-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1390-6

Keywords

Navigation