Skip to main content
Log in

Sensitive and Rapid Voltammetric Determination of Phenothiazine and Azaphenothiazine Derivatives in Pharmaceuticals Using a Boron-doped Diamond Electrode

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Novel, sensitive and rapid electrochemical methods for the determination of phenothiazine and azaphenothiazine derivatives were developed. A boron-doped diamond (BDD) electrode was used for electrochemical oxidation of levomepromazine, promazine and prothipendyl. The electrooxidation of these substances demonstrated reversible peaks of oxidation at the potential range 0.55 – 0.75 V vs. SCE. Examining the influence of scan rate allowed is to demonstrate that the currents registered typical of the diffusion-controlled process. Determinations of the studied analytes were carried out by means of a square wave voltammetry (SWV) method and a differential pulse voltammetry (DPV) method. Linear ranges of determination with the use of the BDD electrode and the SWV method were obtained in the ranges: from 4 × 10−7 to 1.38 × 10−4 mol L−1 for levomepromazine, from 4 × 10−7 to 1.17 × 10−5 mol L−1 for promazine and from 4.95 × 10−7 to 4.54 × 10−5 mol L−1 for prothipendyl. The influence of interferences on the voltammetric signal of the studied analytes was also checked. The proposed procedures were used for quantitative determination of the studied compounds in pharmaceutical preparations. The measurements showed high accuracy. The recovery values obtained ranged from 98.52 to 99.57%. The developed procedures were compared with pharmacopoeial reference methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Gupta, “Bioactive Molecules”, in “Phenothiazines and 1,4-Benzothiazines, Chemical and Biomedical Aspects”, Vol. 4, 1988, Elsevier, Amsterdam.

  2. H. Puzanowska-Tarasiewicz, L. Kuźmicka, J. Karpińska, and K. Mielech-Łukasiewicz, Anal. Sci., 2005, 21, 1149.

    Article  CAS  PubMed  Google Scholar 

  3. T. Kumazawa, C. Hasegawa, S. Uchigasaki, and X. Lee, J. Chromatogr. A, 2011, 1218, 2521.

    Article  CAS  PubMed  Google Scholar 

  4. Q. Xiao and B. Hu, J. Chromatogr. B, 2010, 878, 1599.

    Article  CAS  Google Scholar 

  5. M. C. Quintana, J. J. Ramos, L. Hernandez, and L. Ramos, J. Liq. Chromatogr., 2010, 33, 270.

    Article  CAS  Google Scholar 

  6. M. Cruz-Vera, R. Lucena, S. Cardenas, and M. Valcarcel, J. Chromatogr. B, 2009, 877, 37.

    Article  CAS  Google Scholar 

  7. C. Pistos and J. T. Stewart, Biomed. Chromatogr., 2003, 17, 465.

    Article  CAS  PubMed  Google Scholar 

  8. M. C. Quintana, M. H. Blanco, J. Lacal, and L. Hernandez, Talanta, 2003, 59, 417.

    Article  CAS  PubMed  Google Scholar 

  9. M. Wójciak-Kosior, A. Skalska, and A. Matysik, J. Pharm. Biomed. Anal., 2006, 41, 286.

    Article  PubMed  Google Scholar 

  10. A. El-Didamony and S. Hafeez, Spectrosc. Int. J., 2012, 27, 129.

    Article  CAS  Google Scholar 

  11. S. M. Oliveira, M. A. Segundo, A. O. S. S. Rangel, J. L. F. C. Lima, and V. Cerda, Anal. Lett., 2011, 44, 284.

    Article  CAS  Google Scholar 

  12. H. Puzanowska-Tarasiewicz and J. Karpińska, Acta Pol. Pharm., 2003, 60, 409.

    CAS  PubMed  Google Scholar 

  13. K. Nemcova, P. Nesmerak, J. Rychlovsky, and J. Koutnikova, Talanta, 2005, 65, 632.

    Article  CAS  PubMed  Google Scholar 

  14. Y. Li, W. Niu, and J. Lu, Talanta, 2007, 71, 1124.

    Article  CAS  PubMed  Google Scholar 

  15. C. C. Nascentes, S. Cardenas, M. Gallego, and M. Valcarcel, Anal. Chim. Acta, 2002, 462, 275.

    Article  CAS  Google Scholar 

  16. F. Belal, S. El-Ashry, I. Shehata, M. A. El-Sherbeny, and D. T. E-Sherbeny, Microchim. Acta, 2000, 135, 147.

    Article  CAS  Google Scholar 

  17. S. Dermis and J. Biryol, Analyst, 1989, 114, 525.

    Article  CAS  PubMed  Google Scholar 

  18. S. A. Ozkan, Z. Senturk, B. Uslu, and I. Biryol, J. Pharm. Biomed. Anal., 1996, 15, 365.

    Article  PubMed  Google Scholar 

  19. L. Huang, L. Bu, F. Zhao, and B. Zeng, J. Solid. State Electrochem., 2004, 8, 976.

    Article  CAS  Google Scholar 

  20. R. V. Sandulescu, S. M. Mirel, R. N. Oprane, and S. Lotrean, Collect. Czech. Chem. Commun., 2000, 65, 1014.

    Article  CAS  Google Scholar 

  21. K. Mielech-Łukasiewicz, H. Puzanowska-Tarasiewicz, and A. Panuszko, Anal. Lett., 2008, 41, 789.

    Article  Google Scholar 

  22. M. H. Parvin, Electrochem. Commun., 2011, 13, 366.

    Article  CAS  Google Scholar 

  23. M. A. Karimi, A. Hatefi-Mehrjardi, M. M. Ardakani, R. B. Ardakani, M. H. Mashhadizadeh, and S. Sargazi, Russ. J. Electrochem., 2011, 47, 34.

    Article  CAS  Google Scholar 

  24. A. Ensafi and E. Heydari, Anal. Lett., 2008, 41, 2487.

    Article  CAS  Google Scholar 

  25. Y. Ni, L. Wang, and S. Kokot, Anal. Chim. Acta, 2001, 439, 159.

    Article  CAS  Google Scholar 

  26. M. Vanickova, M. Buckova, and J. Labuda, Chem. Anal. (Warsaw), 2000, 45, 125.

    CAS  Google Scholar 

  27. R. Y. Hwang, G.. Xu, J. Han, J. Y. Le, H. N. Choi, and W. Lee, J. Electroanal. Chem., 2011, 656, 258.

    Article  CAS  Google Scholar 

  28. A. Ferancova, E. Korgova, T. Buzinkaiova, W. Kutner, I. Stepanek, and J. Labuda, Anal. Chim. Acta, 2001, 447, 47.

    Article  CAS  Google Scholar 

  29. B. Zeng, Y. Yang, X. Ding, and F. Zhao, Talanta, 2003, 61, 819.

    Article  CAS  PubMed  Google Scholar 

  30. R. B. Channon, J. C. Newland, A. W. T. Bristow, A. D. Ray, and J. V. Macpherson, Electroanalysis, 2013, 25, 2613.

    Article  CAS  Google Scholar 

  31. B. Zeng and F. Huang, Talanta, 2004, 64, 380.

    Article  CAS  PubMed  Google Scholar 

  32. J. P. Marco, Sens. Actuators, B, 2013, 177, 251.

    Article  CAS  Google Scholar 

  33. B. Unnikrishnan, P. Hsu, and S. Chen, Int. J. Electrochem. Sci., 2012, 7, 11414.

    Article  CAS  Google Scholar 

  34. Y. Einaga, J. Appl. Electrochem., 2010, 40, 1807.

    Article  CAS  Google Scholar 

  35. J. H. T. Luong, K. M. Male, and J. D. Glennon, Analyst, 2009, 134, 1965.

    Article  CAS  PubMed  Google Scholar 

  36. K. Peckova, J. Musilova, and J. Barek, Crit. Rev. Anal. Chem., 2009, 39, 148.

    Article  CAS  Google Scholar 

  37. Y. Zhou and J. Zhi, Talanta, 2009, 79, 1189.

    Article  CAS  PubMed  Google Scholar 

  38. P. De Lima-Neto, A. Correia, R. Portela, M. J. De Silva, G. Linhares-Junior, and J. De Lima, Talanta, 2010, 80, 1730.

    Article  PubMed  Google Scholar 

  39. L. Svorc, D. M. Stankovic, E. Mehmeti, and K. Kalcher, Anal. Methods, 2014, 13, 4853.

    Article  Google Scholar 

  40. R. M. Dornellas, D. B. Nogueira, and R. Q. Aucelio, Anal. Methods, 2014, 6, 944.

    Article  CAS  Google Scholar 

  41. K. Mielech-Łukasiewicz and K. Rogińska, Anal. Methods, 2014, 6, 7912.

    Article  Google Scholar 

  42. E. R. Sartori, R. Medeiros, R. Rocha-Filho, L. Mazo, and O. Fatibello-Filho, Talanta, 2010, 81, 1418.

    Article  CAS  PubMed  Google Scholar 

  43. K. D. Santos, O. C. Braga, I. C. Vieira, and A. Spinelli, Talanta, 2010, 80, 1999.

    Article  CAS  PubMed  Google Scholar 

  44. S. Fierro, C. Comninellis, and Y. Einaga, Talanta, 2013, 103, 33.

    Article  CAS  PubMed  Google Scholar 

  45. J. C. Harfield, K. E. Toghill, C. Batchelor-Mcauley, C. Downing, and R. G. Compton, Electroanalysis, 2011, 23, 931.

    Article  CAS  Google Scholar 

  46. K. E. Toghill, L. Ciao, G. G. Wildgoose, and R. G. Compton, Electroanalysis, 2009, 21, 1113.

    Article  CAS  Google Scholar 

  47. S. Fierro, T. Watanabe, K. Akai, and Y. Einaga, Electrochim. Acta, 2012, 82, 9.

    Article  CAS  Google Scholar 

  48. M. C. Granger, J. S. Xu, J.W. Strojek, and G. M. Swain, Anal. Chim. Acta, 1999, 379, 145.

    Article  Google Scholar 

  49. F. W. P. Ribeiro, A. S. Cardoso, R. R. Portela, J. E. S. Lima, S. A. S. Machado, P. De Lima-Neto, D. De Souza, and A. N. Correia, Electroanalysis, 2008, 20, 2031.

    Article  CAS  Google Scholar 

  50. Z. Galus, “Fundamentals of Electrochemical Analysis”, 1994, Ellis Horwood Press.

  51. J. C. Miller and J. N. Miller, “Statistics for Analytical Chemistry”, 1988, Ellis Horwood, Chichester, UK, New York.

    Google Scholar 

  52. E. Kleszczewska and K. Mielech, J. Trace Microprobe Tech., 2003, 21, 203.

    Article  CAS  Google Scholar 

  53. Polish Pharmacopoeia IX, 2012, PTF, Warsaw.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Mielech-Łukasiewicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mielech-Łukasiewicz, K., Staśkowska, E. Sensitive and Rapid Voltammetric Determination of Phenothiazine and Azaphenothiazine Derivatives in Pharmaceuticals Using a Boron-doped Diamond Electrode. ANAL. SCI. 31, 961–969 (2015). https://doi.org/10.2116/analsci.31.961

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.31.961

Keywords

Navigation