Skip to main content
Log in

Study of Study of electrical properties of gallium-doped lithium titanium aluminum phosphate compounds

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Effect of doping gallium is studied, and thereby, its consequence on the electrical properties of lithium-based Li1.3Al0.3 − x Ga x Ti1.7(PO4)3 (LAGTP) system (where x = 0.01, 0.03, 0.05, and 0.07) is reported. X-ray diffraction (XRD) data is used to interpret the micro-structural properties. Electrical properties of Li+ ion are studied using impedance spectroscopy in the microwave frequency range of 32 MHz to 1 Hz. The effect on Li+ conductivity was studied in a temperature range 303 to 423 K. It was found that the gallium doping enhanced the conductivity of Li+ ions. The maximum Li+ conductivity of ∼4 × 10−3 S/cm was observed for gallium-doped samples at 413 K. The factors affecting the Li+ conductivity are discussed using the results from XRD patterns and impedance spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Goodenough JB, Hong HY-P, Kafalas JA (1976) Fast Na+-ion transport in skeleton structures. Res Bull 11:203

    Article  CAS  Google Scholar 

  2. Y-P HH (1976) Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12. Res Bull 11:173

    Article  Google Scholar 

  3. Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G (1990) Ionic conductivity and sinterability of lithium titanium phosphate. Solid State Ionics 40–41:38

    Article  Google Scholar 

  4. Wang GX, Bradhurst DH, Dou SX, Liu HK (2003) LiTi2(PO4)3 with NASICON-type structure as lithium-storage materials. J Power Sources 124:231

    Article  CAS  Google Scholar 

  5. Ramaraghavulu R, Buddhudu S (2011) Analysis of structural, thermal and dielectric properties of LiTi2(PO4)3 ceramic powders. Ceram Int 37:3651

    Article  CAS  Google Scholar 

  6. Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G (1990) Electrical properties of sintered lithium titanium phosphate ceramics (Li1+xMxTi2-x(PO4)3, M3+ = Al3+, Sc3+ or Y3+. Chem Lett 10:1825

    Article  Google Scholar 

  7. Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G (1990) Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J Electrochem Soc 137:1023

    Article  CAS  Google Scholar 

  8. Kothari DH, Kanchan DK, Sharma P (2014) Electrical properties of Li-based NASICON compounds doped with yttrium oxide. Ionics 20(10):1385–1390. doi:10.1007/s11581-014-1087-2

    Article  CAS  Google Scholar 

  9. Mariappan CR, Govindraj G (2006) Electrical properties of A2.6+x Ti1.4-x Cd (PO4)3.4-x (A = Li, K; x = 0.0–1.0) phosphate glasses. J Non-Crystalline Solids 352:2737

    Article  CAS  Google Scholar 

  10. Cherkaoui F, Viala JC, Delmas C, Hagenmuller P (1986) Crystal chemistry and ionic conductivity of a new Nasicon-related solid solution Na1+x Zr2-x/2Mg x/2(PO4)3. Solid State Ion 21:333

    Article  CAS  Google Scholar 

  11. Hamdoune S, Tan Qui D (1986) Ionic conductivity and crystal structure of Li1+x Ti2-x In x P3O12. Solid State Inics 18 & 19:587

    Article  Google Scholar 

  12. Tan Qui D, Hamdoune S (1988) Structure of the orthorhombic phase of Li1+x Ti2-x In x P3O12, x = 1.08. Acta Cryst 44:1360

    Google Scholar 

  13. Zu-xiang L, Hui-jun Y, Shi-chun L, Shun-bao T (1986) Phase relationship and electrical conductivity of Li1+x Ti2-x Ga x P3O12 and Li1+2× Ti2-x Mg x P3O12. Solid State Ion 18 & 19:549

    Article  Google Scholar 

  14. Fu J (1998) Fast ion conduction in Li2O–(Al2O3 Ga2O3)–TiO2-P2O5 glass ceramics. J Material Science 33:1549

    Article  CAS  Google Scholar 

  15. Reddy KK, Ravuri BR, Reddy KV, Rao VK (2012) Influence of nanocrystalline phases on the electrical properties of lithium titanate phosphate glass ceramics mixed with Ga2O3 nanocrystals. Phase Transit 85:218

    Article  CAS  Google Scholar 

  16. Lakshmi V, Govindraj G (2009) Impedance spectroscopic studies of planetary ball mill lithium titanium phosphate material. Physica B 404:3539

    Article  Google Scholar 

  17. Arbi K, Mandal S, Rojo JM, Sanz J (2002) Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi 2-x Al x (PO4)3, 0≤ x ≤0.7. A parallel NMR and electric impedance study. Chem Mater 14:1091

    Article  CAS  Google Scholar 

  18. Subramanian MA, Subramanian R, Clearfield A (1986) Lithium ion conductors in the system AB (IV)2(PO4)3 (B = Ti, Zr and Hf). Solid State Ionics 18 & 19:562

    Article  Google Scholar 

  19. McDonald JR (1987) Impedance spectroscopy. Wiley, New York

    Google Scholar 

  20. Boukamp BA (1986) A package for impedance/admittance data analysis. Solid State Ion 18–19:136

    Article  Google Scholar 

  21. Boukamp BA (2004) Electrochemical impedance spectroscopy in solid state ionics: recent advances. Solid State Ion 169:65

  22. Saito Y, Ado K, Asai T, Kageyama H, Nakamura O (1992) Ionic conductivity of NASICON-type conductors Na1.5M0.5Zr1.5(PO4)3, (M3+ = Al3+, Ga3+, Cr3+, Sc3+, Fe3+, In3+, Yb3+, Yb3+). Solid State Ionics 58:327

    Article  CAS  Google Scholar 

  23. Wong S, Newman PJ, Best AS, Nairn KM, MacFarlane DR, Forsyth M (1998) Towards elucidating microscopic structural changes in Li-ion conductors Li1+yTi2-yAly[PO4]3 and Li1+yTi2-yAly[PO4]3-x[MO4]x (M = V and Nb): X-ray and 27Al and 31P NMR studies. J Mater Chem 8(10):2199

    Article  CAS  Google Scholar 

  24. Best AS, Forsyth M, MacFarlane DR (2000) Stoichiometric changes in lithium conducting materials based on Li1+xAl x Ti 2-x (PO4)3. Solid State Ion 136–137:339

    Article  Google Scholar 

  25. Forsyth M, Wong S, Nairn KM, Best AS, Newman PJ, MacFarlane DR (1999) NMR studies of modified nasicon-like lithium conducting solid electrolytes. Solid State Ion 124:213

    Article  CAS  Google Scholar 

  26. Key B, Schroeder DJ, Ingram BJ, Vaughley JT (2012) Solution-Based synthesis and characterization of lithium-ion conducting phosphate ceramics for lithium metal batteries. Chem Mater 24:287

    Article  CAS  Google Scholar 

  27. Nan Y, Lee WE, James PF (1992) Crystallization behavior of CaO-P2O5 Glass with TiO2, SiO2, and Al2O3 additions. J Am Ceram Soc 75(6):1641

    Article  CAS  Google Scholar 

  28. Fuentes RO, Figuieredo FM, Marques FMB, Franco JI (2001) Influence of microstructure on the electrical properties of NASICON materials. Solid State Ion 140:173

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Kanchan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kothari, D.H., Kanchan, D.K. Study of Study of electrical properties of gallium-doped lithium titanium aluminum phosphate compounds. Ionics 21, 1253–1259 (2015). https://doi.org/10.1007/s11581-014-1287-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1287-9

Keywords

Navigation