Skip to main content
Log in

Electrical properties of Li-based NASICON compounds doped with yttrium oxide

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the present study, the electrical properties of lithium-based Li1.3Al0.3 − x Y x Ti1.7(PO4)3 (LAYTP) system is reported. Yttrium is a rare earth element and has been found to be an excellent sintering aid in ceramic electrode materials. Earlier attempts to replace the tetravalent Ti4+ using trivalent cations like Al3+, Y3+, In3+, and Sc3+ in rhombohedral NASICON structure have resulted in enhanced electrical conductivity. The effect of trivalent cation Y3+ doping in an optimized system Li1.3Al0.3Ti1.7(PO4)3 (LATP) is discussed. The electrical properties of this ceramic compound in temperature range of 303 to 423 K and in the microwave frequency range of 20 MHz to 1 Hz were studied for the LAYTP system using impedance spectroscopy. The role of yttrium to improve the density of the material and thereby the study of the grain and grain boundary is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goodenough JB, Hong HY-P, Kafalas JA (1976) Fast Na+-ion transport in skeleton structures. Res Bull 11:203

    Article  CAS  Google Scholar 

  2. Hong HY-P (1976) Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12. Res Bull 11:173

    Article  CAS  Google Scholar 

  3. Wang GX, Bradhurst DH, Dou SX, Liu HK (2003) LiTi2(PO4)3 with NASICON-type structure as lithium-storage materials. J Power Sources 124:231

    Article  CAS  Google Scholar 

  4. Losilla ER, Aranda MAG, Bruque S, Paris MA, Sanz J, West AR (1998) Understanding Na mobility in NASICON materials: a Rietveld, 23Na and 31P MAS NMR, and impedance study. Chem Mater 10:665

    Article  CAS  Google Scholar 

  5. Maldonado-Manso P, Aranda MAG, Bruque S, Sanz J, Losilla ER (2005) Nominal vs. actual stoichiometries in AL-doped NASICONs: a study of the Na1.4Al0.4M1.6(PO4)3 (M = Ge, Sn, Ti, Hf, Zr) family. Solid State Ionics 176:1613

    Article  CAS  Google Scholar 

  6. Anantharamulu B, Rao KK, Rambabu G, Vijayakumar B, Radha V, Vithal M (2011) A wide-ranging review on Nasicon type materials. J Mater Sci 46:2821

    Article  CAS  Google Scholar 

  7. Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G (1990) Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J Electrochem Soc 137:1023

    Article  CAS  Google Scholar 

  8. Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G (1990) Ionic conductivity and sinterability of lithium titanium phosphate. Solid State Ionics 40–41:38

    Article  Google Scholar 

  9. Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G (1991) Electrical property and sinterability of LiTi2(P04)3 mixed with lithium salt (Li3PO4 or Li3BO3). Solid State Ionics 47:257

    Article  CAS  Google Scholar 

  10. Shi-Chun L, Zu-Xiang L (1983) Phase relationship and ionic conductivity of Lil+xTi2-xInx P3O12. Solid State Ionics 9/10: 835

    Google Scholar 

  11. Paris MA, Martinez-Juarez A, Rojo JM, Sanz J (1996) Lithium mobility in the NASICON-type compound LiTi2 (PO4)3 by nuclear magnetic resonance and impedance spectroscopies. J Condens Matter 8:5366

    Article  Google Scholar 

  12. Sobiestiankas R, Dindune A, Kanepe Z, Ronis J, Kezionis A, Kazakevicius E, Orliukas A (2000) Electrical properties of Li1+xYyTi2-y(PO4)3 (where x,y = 0.3; 0.4) ceramics at high frequencies. Mater Sci Eng B 76:184

    Article  Google Scholar 

  13. Mariappan CR, Gellert M, Yada C, Rosciano F, Roling B (2012) Grain boundary resistance of fast ion conductors: comparison between a lithium-ion conductive Li-Al-Ti-P-O-type glass ceramic and a Li1.5Al0.5Ge1.5P3O12 ceramic. Electrochem Commun 14:25

    Article  CAS  Google Scholar 

  14. Mariappan CR, Yada C, Rosciano F, Roling B (2011) Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics. J Power Sources 196:6456

    Article  CAS  Google Scholar 

  15. Salkus T, Kazakevicius E, Kezionis A, Dindune A, Kanepe Z, Ronis J, Emery J, Boulant A, Bohnke O, Orliukas AF (2009) Peculiarities of ionic transport in Li1.3Al0.15Y0.15Ti1.7(PO4)3 ceramics. J Phys Condens Matter 21:185502

    Article  CAS  Google Scholar 

  16. Salkus T, Kazakevicius E, Kezionis A, Kazlauskiene V, Miskinis J, Dindune A, Kanepe Z, Ronis J, Dudek M, Bucko M, Dygas JR, Bogusz W, Orliukas AF (2011) XPS and ionic conductivity studies on Li1.3Al0.15Y0.15Ti1.7(PO4)3 ceramics. Ionics 16:631

    Article  Google Scholar 

  17. Fu J (1997) Superionic conductivity of glass-ceramics in the system Li2O-Al2O3-TiO2-P2O5. Solid State Ionics 96:195

    Article  CAS  Google Scholar 

  18. Chowdhari BVR, Subba Rao GV, Lee GYH (2000) XPS and ionic conductivity studies on Li2O–Al2O3–(TiO2 or GeO2)–P2O5 glass–ceramics. Solid State Ionics 136–137:1067

    Article  Google Scholar 

  19. Best AS, Forsyth M, MacFarlane DR (2000) Stoichiometric changes in lithium conducting materials based on Li1+x Al x Ti2-x (PO4)3. Solid State Ionics 136–137:339

    Article  Google Scholar 

  20. Arbi K, Mandal S, Rojo JM, Sanz J (2002) Dependence of ionic conductivity on composition of fast ionic conductors Li1+x Ti2-x Al x (PO4)3, 0 ≤ x ≤ 0.7. A parallel NMR and electric impedance study. Chem Mater 14:1091

    Article  CAS  Google Scholar 

  21. Arbi K, Lazarraga MG, Ben Hassen Chehimi D, Ayadi-Trabelsi M, Rojo JM, Sanz J (2004) Lithium mobility in Li1.2Ti1.8 R 0.2(PO4)3 compounds (R = Al, Ga, Sc, In) as followed by NMR and impedance spectroscopy. Chem Mater 16:255

    Article  CAS  Google Scholar 

  22. Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267:673

    Article  CAS  Google Scholar 

  23. Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G (1990) Electrical properties of sintered lithium titanium phosphate ceramics (Li1+xMxTi2-x(PO4)3, M3+ = Al3+, Sc3+ or Y3+. Chem Lett 10:1825

    Article  Google Scholar 

  24. Orliukas AF, Salkus T, Kezionis A, Dindune A, Kanepe Z, Ronis J, Venckute V, Kazlauskiene V, Miskinis J, Lukauskas A (2012) Structure and broadband impedance spectroscopy of Li1.3Al0.15Y0.15Ti1.7(PO4)3 solid electrolyte ceramics. Solid State Ionics 225:620

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh K. Kanchan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kothari, D.H., Kanchan, D.K. & Sharma, P. Electrical properties of Li-based NASICON compounds doped with yttrium oxide. Ionics 20, 1385–1390 (2014). https://doi.org/10.1007/s11581-014-1087-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1087-2

Keywords

Navigation