Skip to main content
Log in

Enhancement in electrochemical properties of ionic liquid-based nanocomposite polymer electrolytes by 100 MeV Si9+ swift heavy ion irradiation

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Swift heavy ion (SHI) irradiation has been used as a tool to enhance the electrochemical properties of ionic liquid-based nanocomposite polymer electrolytes dispersed with dedoped polyaniline (PAni) nanorods; 100 MeV Si9+ ions with four different fluences of 5 × 1010, 1 × 1011, 5 × 1011, and 1 × 1012 ions cm−2 have been used as SHI. XRD results depict that with increasing ion fluence, crystallinity decreases due to chain scission up to fluence of 5 × 1011 ions cm−2, and at higher fluence, crystallinity increases due to cross-linking of polymer chains. Ionic conductivity, electrochemical stability, and dielectric properties are enhanced with increasing ion fluence attaining maximum value at the fluence of 5 × 1011 ions cm−2 and subsequently decrease. Optimum ionic conductivity of 1.5 × 10−2 S cm−1 and electrochemical stability up to 6.3 V have been obtained at the fluence of 5 × 1011 ions cm−2. Ac conductivity studies show that ion conduction takes place through hopping of ions from one coordination site to the other. On SHI irradiation, amorphicity of the polymer matrix increases resulting in increased segmental motion which facilitates ion hopping leading to an increase in ionic conductivity. Thermogravimetric analysis (TGA) measurements show that SHI-irradiated nanocomposite polymer electrolytes are thermally stable up to 240–260 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Nature 451:652

  2. Parveen A, Anilkumar KR, Patil SD, Roy AS (2013) Ionics 19:91

    Article  CAS  Google Scholar 

  3. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nature 394:456

    Article  CAS  Google Scholar 

  4. Pandey K, Dwivedi MM, Tripathi M, Singh M, Agrawal SL (2008) Ionics 14:515

    Article  CAS  Google Scholar 

  5. Padmaraj O, Venkateswarlu M, Satyanarayana N (2013) Ionics 19:1835

    Article  CAS  Google Scholar 

  6. Suthanthiraraj SA, Paul BJ (2007) Ionics 13:365

    Article  CAS  Google Scholar 

  7. Fan LZ, Xing T, Awan R, Qiu W (2011) Ionics 17:491

    Article  CAS  Google Scholar 

  8. Vaia RA, Jandt KD, Kramer EJ, Giannelis EP (1996) Chem Mater 8:2628

    Article  CAS  Google Scholar 

  9. Sekhon SS, Kaur DP, Park JS, Yamada K (2012) Electrochim Acta 60:366

    Article  CAS  Google Scholar 

  10. Nath AK, Kumar A (2014) J Membr Sci 453:192

    Article  CAS  Google Scholar 

  11. Hofmann A, Schulz M, Hanemann T (2013) Electrochim Acta 89:823

    Article  CAS  Google Scholar 

  12. Libo L, Jiajia W, Peixia Y, Shaowen G, Heng W, Xiuchun Y, Xuwei M, Shuo Y, Baohua W (2013) Electrochim Acta 88:147

    Article  Google Scholar 

  13. Lavall RL, Ferrari S, Tomasi C, Marzantowicz M, Quartarone E, Fagnoni M, Mustarelli P, Saladino ML (2012) Electrochim Acta 60:359

    Article  CAS  Google Scholar 

  14. Nan CW, Fan L, Lin Y, Cai Q (2003) Phys Rev Lett 91:266104

    Article  Google Scholar 

  15. Raghavan P, Zhao X, Manuel J, Chauhan GS, Ahn JH, Ryu HS, Ahn HJ, Kim KW, Nah C (2010) Electrochim Acta 55:1347

    Article  CAS  Google Scholar 

  16. Singh P, Kumar R, Prasad R (2013) Radiation Effects and defects in Solids 168:97

  17. Deka M, Kumar A (2013) J Solid State Electrochem 17:977

    Article  CAS  Google Scholar 

  18. Kumar A, Deka M, Banerjee S (2010) Solid State Ionics 181:609

    Article  CAS  Google Scholar 

  19. Allen D, Baston G, Bradley AE, Gorman T, Haile A, Hamblett I, Hatter JE, Healey MJF, Hodgson B, Thied RC (2002) Green Chem 4:152

    Article  CAS  Google Scholar 

  20. Qi M, Wu G, Li Q, Luo Y (2008) Radiat Phys Chem 77:877

    Article  CAS  Google Scholar 

  21. Hussain AMP, Kumar A, Singh F, Avasthi DK (2006) J Phys D Appl Phys 39:750

    Article  CAS  Google Scholar 

  22. Nath AK, Kumar A (2013) Solid State Ionics 253:8

    Article  CAS  Google Scholar 

  23. Keijser THD, Langford JI, Mittemeijer EJ, Vogels ABP (1982) J Appl Crystallogr 15:308

    Article  Google Scholar 

  24. Calcagno L (1995) Nucl Inst Methods B 105:63

    Article  CAS  Google Scholar 

  25. Saikia D, Kumar A, Singh F, Avasthi DK (2006) J Phys D Appl Phys 39:4208

    Article  CAS  Google Scholar 

  26. Lee EH (1999) Nucl Inst Methods B 151:29

    Article  CAS  Google Scholar 

  27. Lee EH, Rao GR, Mansur LK (1999) Radiat Phys Chem 55:293

    Article  CAS  Google Scholar 

  28. Takeuchi I, Asaka K, Kiyohara K, Sugino T, Mukai K, Randriamahazaka H (2010) J Phys Chem C 114:14627

    Article  CAS  Google Scholar 

  29. Khaled KF, Heckerman N (2003) Electrochim Acta 48:2715

    Article  CAS  Google Scholar 

  30. Ando RA, Siqueira LJA, Bazito FC, Torresi RM, Santos PS (2007) J Phys Chem B Lett 111:8717

    Article  CAS  Google Scholar 

  31. Gaafar M (2001) Nucl Inst Methods B 174:507

    Article  CAS  Google Scholar 

  32. Williams ML, Landel RF, Ferry JD (1955) J Am Chem Soc 77:3701

    Article  CAS  Google Scholar 

  33. Dyre JC (1988) J Appl Phys 64:2456

    Article  Google Scholar 

  34. Jonscher AK (1996) Dielectric relaxation in solids. Chelsea Dielectric, London

    Google Scholar 

  35. Roling B, Martiny C, Funke K (1999) J Non-Cryst Solids 249:201

    Article  CAS  Google Scholar 

  36. Lewis MB, Lee EH, Rao GR (1994) J Nucl Mater 211:46

    Article  CAS  Google Scholar 

  37. Deb B, Ghosh A (2010) J Appl Phys 108:074104

    Article  Google Scholar 

  38. Kroon MC, Buijs W, Peters CJ, Witkamp GJ (2007) Thermochim Acta 465:40

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from University Grants Commission (UGC), New Delhi through grant no. F.40-445/2011 (SR) is gratefully acknowledged. The authors gratefully acknowledge IUAC, New Delhi, India, for providing swift heavy ion irradiation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, A.K., Kumar, A. Enhancement in electrochemical properties of ionic liquid-based nanocomposite polymer electrolytes by 100 MeV Si9+ swift heavy ion irradiation. Ionics 20, 1711–1721 (2014). https://doi.org/10.1007/s11581-014-1133-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1133-0

Keywords

Navigation