Skip to main content
Log in

A comparative and correlation structure-Ac conductivity analysis of doped 1%Eu3+ and undoped ceramic of Li2BaP2O7

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, Li2BaP2O7 doped 1% Eu3+ was prepared by a solid-state reaction method and characterized by X-ray diffraction technique, IR, and impedance spectroscopy. Rietveld refinement of the X-ray diffraction pattern suggests the formation of the single-phase desired compound with monoclinic structure at room temperature. Electrical properties were studied using complex impedance spectroscopy in the frequency range of 200 Hz–5 MHz and temperature range of 598–724 K. The temperature dependence of the bulk and grain boundaries’ conductivity was found to obey the Arrhenius law with activation energies Eg = 0.79 eV and Egb = 1.85 eV respectively. Temperature dependence of the power law exponent s strongly suggests that tunneling of large polaron is the dominant transport process. The obtained results are compared with the undoped Li2BaP2O7 sample and correlated with structural analysis. Doping pyrophosphate compound by Eu3+ presents better conductivity and electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhong J, Liang H, Han B, Su Q, Tao Y (2008) NaGd(PO3)4: Tb 3+ A new promising green phosphor for PDPs application. Chem Phys Lett 453:192–196

    Article  CAS  Google Scholar 

  2. Zhu J, Cheng WD, Wu DS, Zhang H, Gong YJ, Tong HN, Zhao D (2008) Crystal and band structures, and optical characterizations of sodium rare earth phosphates NaLnP2O7 and NaLn (PO3)4(Ln = Ce, Eu). Alloys Compd 454:419–426

    Article  CAS  Google Scholar 

  3. Chipaux R, Cribier M, Dujardin C, Garnier N, Guerassimova N, Mallet J, Meyer JP, Pedrini C, Petrosyan AG (2002) Ytterbium-based scintillators, a new class of inorganic scintillators for solar neutrino spectroscopy. Nucl Instrum Methods Phys Res A 486:228–233

    Article  CAS  Google Scholar 

  4. Ferhi M, Horchani-Naifer K, Ferid M (2008) Hydrothermal synthesis and photoluminescence of the monophosphate LaPO4:Eu(5%). Lumin 128:1777–1782

    Article  CAS  Google Scholar 

  5. Ferhi M, Horchani-Naifer K, Ferid M (2009) Combustion synthesis and luminescence properties of LaPO4: Eu (5%). Rare Earths 27:182–186

    Article  Google Scholar 

  6. Beltaif M, Dammak M, Megdiche M, Guidara K (2016) Synthesis, optical spectroscopy and Judd–Ofelt analysis of Eu3+ doped Li 2 BaP2O7 phosphors. Lumin 177:373–379

    Article  CAS  Google Scholar 

  7. Krichen M, Megdiche M, Guidara K, Gargouri M (2015) AC conductivity and mechanism of conduction study of lithium barium pyrophosphate Li2BaP2O7 using impedance spectroscopy. Ionics 21:935–948

    Article  CAS  Google Scholar 

  8. Dridi N, Arbib E, Boukhari A, Holt EM (2002) Dilithium barium diphosphate. Acta Crystallogr C 58:74–75

    Article  CAS  Google Scholar 

  9. Wani JA, Dhoble NS, Kokode NS, DevaPrasadRaju B, Dhoble SJ (2014) Synthesis and luminescence property of Li2BaP2O7: Ln 3+(Ln= Eu, Sm) phosphors. Lumin 147:223–228

    Article  CAS  Google Scholar 

  10. Wani JA, Dhoble NS, Dhoble SJ (2012) Photoluminescence characterization of Li2BaP2O7:Ce3+ phosphor. Int J Knowl Eng 3:130–131

    Google Scholar 

  11. Liebertz J, Stahr S (1983) Li2BaP2O7: Einkristallzüchtung, Metrik und Raumgruppe. Z Krist 162:313–314

    Article  CAS  Google Scholar 

  12. Ayed B (2012) Crystal structure and ionic conductivity of AgCr2(PO4)(P2O7). C R Chimie 15:603–608

    Article  CAS  Google Scholar 

  13. Mac Donald JR (1987) Impedance spectroscopy: emphasizing solid materials and systems. John Wiley and Sons, New York

    Google Scholar 

  14. Mahamoud H, Louati B, Hlel F, Guidara K (2011) Impedance and modulus analysis of the (Na0.6Ag0.4)2PbP2O7 compound. Alloys Compd 509:6083–6089

    Article  CAS  Google Scholar 

  15. Megdiche M, Perrin-pellegrino C, Gargouri M (2014) Conduction mechanism study by overlapping large-polaron tunnelling model in SrNiP2O7 ceramic compound. Alloys Compd 584:209–215

    Article  CAS  Google Scholar 

  16. Jonscher AK (1977) The universal dielectric response. Nature 267:673–679

    Article  CAS  Google Scholar 

  17. Dussouze M (2005) Second harmonic generation in glasses borophosphate sodium and niobium thermal polarization. Thesis, University Bordeaux I (France)

  18. Elliott SR (1977) A theory of ac conduction in chalcogenide glasses. Philos Mag B 36:1291–1304

    Article  CAS  Google Scholar 

  19. Pike GE (1972) AC conductivity of scandium oxide and a new hopping model for conductivity. Phys Rev B: Condens Matter 6:1572–1580

    Article  CAS  Google Scholar 

  20. Ghosh A, Bhattacharya S, Ghosh A (2008) Frequency dependent conductivity of cadmium vanadate glassy semiconductor. J Phys Condens Matter 20:035203–035208

    Article  CAS  Google Scholar 

  21. Long AR (1982) Frequency-dependent loss in amorphous semiconductors. Adv Phys 31:553–637

    Article  CAS  Google Scholar 

  22. Moynihan CT, Boesch LB, Laberge NL (1973) The Debye-Falkenhagen theory of electrical relaxation in glass. Phys Chem Glasses 14:122

    CAS  Google Scholar 

  23. Macedo PB, Moynihan CT, Bose R (1972) The role of ionic diffusion in polarization in vitreous ionic conductors. Phys Chem Glasses 13:171

    CAS  Google Scholar 

  24. Qian X, Gu N, Cheng Z, Yang X, Dong S (2001) Impedance study of (PEO)10LiClO4–Al2O3 composite polymer electrolyte with blocking electrodes. Electrochim Acta 46:1829–1836

    Article  CAS  Google Scholar 

  25. Almond DP, West AR (1983) Impedance and modulus spectroscopy of “real” dispersive conductors. Solid State Ionics 11:57–64

    Article  CAS  Google Scholar 

  26. Gerhardt R (1994) Impedance and dielectric spectroscopy revisited: distinguishing localized relaxation from long-range conductivity. J Phys Chem Solids 55:1491–1506

    Article  CAS  Google Scholar 

  27. Reau JM, Jun XY, Senegas J, Le Deit C, Poulain M (1997) Influence of network modifiers on conductivity and relaxation parameters in some series of fluoride glasses containing LiF. Solid State Ionics 95:191–199

    Article  CAS  Google Scholar 

  28. Bobe JM, Reau JM, Senegas J, Poulain M (1995) F ion conductivity and diffusion properties in ZrF4−based fluoride glasses with various NaF concentrations (0⩽ xNaF⩽ 0.45. Solid State Ionics 82:39–52

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariem Beltaif.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beltaif, M., Krichen, M., Megdiche, M. et al. A comparative and correlation structure-Ac conductivity analysis of doped 1%Eu3+ and undoped ceramic of Li2BaP2O7. Ionics 25, 3247–3258 (2019). https://doi.org/10.1007/s11581-018-2826-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2826-6

Keywords

Navigation