Skip to main content
Log in

Preparation and characterization of co-doped (Ce0.80La0.15Al0.05O1.90) and multiple-doped (Ce0.80Sm0.10Gd0.05Al0.05O1.90 and Ce0.80Gd0.10Sm0.05Al0.05O1.90) ceria

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Attempts have been made to synthesize a few compositions Ce0.80La0.15Al0.05O1.90, Ce0.80Sm0.10Gd0.05Al0.05O1.90, and Ce0.80Gd0.10Sm0.05Al0.05O1.90 by citrate–nitrate auto-combustion method. The aim of the present investigation was to study the effect of co-doping and multiple doping on the ionic conductivity of CeO2 for its use as solid electrolyte in intermediate temperature solid oxide fuel cells. XRD patterns showed that all the samples have fluorite-type crystal structure similar to undoped ceria. Microstructures of thermally etched samples have been studied by scanning electron microscopy. Contributions of grains σ g and grain boundaries σ gb to the total conductivity σ T, have been determined using impedance analysis. Impedance measurements were made in the frequency range 1 Hz–1 MHz and temperature range 250–500 °C. Our experimental results show that multiple doping is more effective than co-doping for improving the oxide ion conductivity of ceria in the materials investigated in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Minh NQ (1993) J Am Ceram Soc 76(3):563–588

    Article  CAS  Google Scholar 

  2. Steele BCH (2000) Solid State Ionics 129:95–110

    Article  CAS  Google Scholar 

  3. Zha SW, Xia CR, Meng GY (2003) J Power Sources 115:44–48

    Article  CAS  Google Scholar 

  4. Kuharuangrong S (2007) J Power Sources 171:506–510

    Article  CAS  Google Scholar 

  5. Inaba H, Tagawa H (1996) Solid State Ion 83:1–16

    Article  CAS  Google Scholar 

  6. Dhlabhai PP, Adams JB, Crozier P, Sharma R (2010) J Chem Phys 132:094104

    Article  Google Scholar 

  7. Mogensen M, Sammers NM, Tompsett GA (2000) Solid State Ion 129:63–94

    Article  CAS  Google Scholar 

  8. Arif I, Hooper J, Giorgi BJ, Woo TK (2011) PCCP 13:6116–6124

    Article  Google Scholar 

  9. Peng C, Liu YN, Zheng YX (2003) Mater Chem Phys 82:509–514

    Article  CAS  Google Scholar 

  10. Ou DR, Mori T, Ye F, Kobayashi T, Zou J, Auchterlonie G, Drennan J (2006) Appl Phys Lett 89:171911

    Article  Google Scholar 

  11. Balazs GB, Glass RS (1995) Solid State Ion 76:155–162

    Article  Google Scholar 

  12. Eguchi K, Setoguchi T, Inoue Y, Arai H (1992) Solid State Ion 52:165–172

    Article  CAS  Google Scholar 

  13. Kim DJ (1989) J Am Ceram Soc 72:1415–1421

    Article  CAS  Google Scholar 

  14. Kilner J (1983) Solid State Ion 8:201–207

    Article  CAS  Google Scholar 

  15. Kilner J, Brook RJ (1983) Solid State Ion 6:237–252

    Article  Google Scholar 

  16. Liu YY, Li B, Wei X, Pan W (2008) J Am Ceram Soc 91(12):3926–3933

    Article  CAS  Google Scholar 

  17. Omar S, Wachsman ED, Nino JC (2008) Solid State Ion 178:1890–1897

    Article  CAS  Google Scholar 

  18. Herle JV, Seneviratne D, McEvoy AJ (1999) J Eur Ceram Soc 19:837–841

    Article  Google Scholar 

  19. Mori T, Drennan J, Lee JH, Li JG, Ikegami T (2002) Solid State Ion 461:154–155

    Google Scholar 

  20. Wang FY, Chen S, Cheng S (2004) Electrochem Commun 6:743–746

    Article  CAS  Google Scholar 

  21. Kim N, Kim BH, Lee D (2000) J Power Sources 90:139–43

    Article  CAS  Google Scholar 

  22. Mori T, Yamamura H (1998) J Mater Syn Proc 6:175–179

    Article  CAS  Google Scholar 

  23. Sha X, Zhe L, Huang X, Miao J, Ding Z, Xin X, Su W (2007) J Alloys Compd 428:59–64

    Article  CAS  Google Scholar 

  24. Sujatha DP, Banerjee S (2008) Solid State Ion 14:73–78

    Google Scholar 

  25. Basu S, Sujatha DP, Maitti HS (2004) J Mater Res 19:3162–3171

    Article  CAS  Google Scholar 

  26. Singh NK, Singh P, Kumar D, Parkash O. Ionics, doi:10.1007/s11581-011-0604-9

  27. Chen L, Fleming P, Morris V, Holmes JD, Morris MA (2010) J Phys Chem C 114:12909–12919

    Article  CAS  Google Scholar 

  28. Hodge IM, Ingram MD, West AR (1976) J Electro Anal Chem 74:125–143

    Article  CAS  Google Scholar 

  29. Gerhardt A, Nowick AS (1986) J Am Ceram Soc 69:641–646

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Thanks are due to Department of Science and Technology, New Delhi for financial support. One of the authors, Namrata Singh is thankful to University Grant Commission, New Delhi for providing a fellowship during the course of these investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om Parkash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, N., Singh, N.K., Parkash, O. et al. Preparation and characterization of co-doped (Ce0.80La0.15Al0.05O1.90) and multiple-doped (Ce0.80Sm0.10Gd0.05Al0.05O1.90 and Ce0.80Gd0.10Sm0.05Al0.05O1.90) ceria. Ionics 18, 473–478 (2012). https://doi.org/10.1007/s11581-011-0647-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-011-0647-y

Keywords

Navigation