Skip to main content
Log in

Ca, Sr or Mg-doped Ceria Electrolytes Prepared by Citrate-Nitrate Combustion Synthesis: Effect of Doping Concentration

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In this work, it was aimed to synthesize and characterize rare earth metal-free cerium-based electrolytes that might be used in solid oxide fuel cells (SOFCs) by doping calcium, strontium, or magnesium to CeO2. For this purpose, CeO2, CaxCe(1-x)O(2−δ) (0.16 ≤ x ≤ 0.24), SrxCe(1-x)O(2−δ) (0.02 ≤ x ≤ 0.08) and MgxCe(1-x)O(2−δ) (0.07 ≤ x ≤ 0.13) were prepared by using citrate-nitrate combustion method. The solubility limits, microstructural and physical properties of the samples were characterized with XRD, SEM, TG-DTA and impedance analysis. It was found that all samples were in fluorite structure similar to the undoped ceria. The solubility limits of Ca2+, Sr2+ and Mg2+ were 21%, 6% and 12% (by mole) respectively based on XRD analysis results. The relative densities of sintered pellets at 1400 °C were more than 90%. Electrochemical impedance spectroscopy analysis, in which the ionic conductivities of the samples were measured, revealed that the Ca0.2Ce0.8O2-δ (CCO20) sample sintered at 1400 °C showed the highest ionic conductivity value of 4.47 x10-2 S.cm−1 at 800 °C. It was determined that the O2- ion conductivity decreased with the order of Ca2+ ≈ Sr2+ >> Mg2+. Conductivities increased with increasing dopant ratio, reached a maximum below the ratios of solubility limits, and then decreased. The obtained results showed that Ca or Sr doped electrolytes prepared by the citrate-nitrate method can show ionic conductivities close to the state-of-the-art Sm doped Ceria electrolytes. It has been determined that Mg doping is quite ineffective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. M. Singh, D. Zappa, E. Comini, Int. J. Hydrogen Energy 46, 27643 (2021)

    Article  CAS  Google Scholar 

  2. Z. Zakaria, Z. Awang Mat, S. H. Abu Hassan, Y. Boon Kar, Int. J. Energy Res. 44, 594 (2020)

  3. V.V. Kharton, F.M.B. Marques, A. Atkinson, Solid State Ionics 174, 135 (2004)

    Article  CAS  Google Scholar 

  4. B. Wang, B. Zhu, S. Yun, W. Zhang, C. Xia, M. Afzal, Y. Cai, Y. Liu, Y. Wang, H. Wang, NPG Asia Mater. 11, 1 (2019)

  5. G. Dell’Agli, L. Spiridigliozzi, M. Pansini, G. Accardo, S.P. Yoon, D. Frattini, Ceram. Int. 44, 17935 (2018)

    Article  Google Scholar 

  6. S.F. Wang, C.T. Yeh, Y.R. Wang, Y.C. Wu, J. Mater. Res. Technol. 2, 141 (2013)

    Article  CAS  Google Scholar 

  7. J. Ma, C. Jiang, X. Zhou, G. Meng, X. Liu, J. Alloys Compd. 455, 364 (2008)

    Article  CAS  Google Scholar 

  8. A. Arabaci, Ö. Serin, J. Mater. Eng. Perform. 24, 2730 (2015)

    Article  CAS  Google Scholar 

  9. H. Özdemir, V. Sarboga, M. A. Faruk Öksüzömer, M. Ali Gürkaynak, J. Power Sources 219, 155 (2012)

  10. N. Jaiswal, N.K. Singh, D. Kumar, O. Parkash, J. Power Sources 202, 78 (2012)

    Article  CAS  Google Scholar 

  11. Y. Zheng, H. Gu, H. Chen, L. Gao, X. Zhu, L. Guo, Mater. Res. Bull. 44, 775 (2009)

    Article  CAS  Google Scholar 

  12. B. Zhu, X. Liu, M. Sun, S. Ji, J. Sun, Solid State Sci. 5, 1127 (2003)

    Article  CAS  Google Scholar 

  13. M. Yan, T. Mori, J. Zou, F. Ye, D.R. Ou, J. Drennan, Acta Mater. 57, 722 (2009)

    Article  CAS  Google Scholar 

  14. J. M. Siqueira Júnior, L. F. Brum Malta, F. M. S. Garrido, T. Ogasawara, M. E. Medeiros, Mater. Chem. Phys. 135, 957 (2012)

  15. Y. Zheng, S. He, L. Ge, M. Zhou, H. Chen, L. Guo, Int. J. Hydrogen Energy 36, 5128 (2011)

    Article  CAS  Google Scholar 

  16. O. Parkash, N. Singh, N.K. Singh, D. Kumar, Solid State Ionics 212, 100 (2012)

    Article  CAS  Google Scholar 

  17. N. Jaiswal, D. Kumar, S. Upadhyay, O. Parkash, J. Alloys Compd. 577, 456 (2013)

    Article  CAS  Google Scholar 

  18. N. Singh, N.K. Singh, D. Kumar, O. Parkash, J. Alloys Compd. 519, 129 (2012)

    Article  CAS  Google Scholar 

  19. J.G. Li, T. Ikegami, T. Mori, Acta Mater. 52, 2221 (2004)

    Article  CAS  Google Scholar 

  20. A.A. Baqer, K.A. Matori, N.M. Al-Hada, A.H. Shaari, H.M. Kamari, E. Saion, J.L.Y. Chyi, C.A.C. Abdullah, Results Phys. 9, 471 (2018)

    Article  Google Scholar 

  21. M. Mogensen, N.M. Sammes, G.A. Tompsett, Solid State Ionics 129, 63 (2000)

    Article  CAS  Google Scholar 

  22. K. C. Anjaneya, G. P. Nayaka, J. Manjanna, V. M. Ashwin Kumar, G. Govindaraj, K. N. Ganesha, J. Alloys Compd. 598, 33 (2014)

  23. S. Anirban, A. Dutta, Int. J. Hydrogen Energy 45, 25139 (2020)

    Article  CAS  Google Scholar 

  24. T. Sherwood, R.T. Baker, Solids 2, 293 (2021)

    Article  CAS  Google Scholar 

  25. N. Jaiswal, S. Upadhyay, D. Kumar, O. Parkash, Int. J. Hydrogen Energy 39, 543 (2014)

    Article  CAS  Google Scholar 

  26. M.A.F. Öksüzömer, G. Dönmez, V. Sariboğa, T.G. Altinçekiç, Ceram. Int. 39, 7305 (2013)

    Article  Google Scholar 

  27. S. Zha, C. Xia, G. Meng, J. Power Sources 115, 44 (2003)

    Article  CAS  Google Scholar 

  28. Z. Zhong, Y. Jiang, Z. Lian, X. Song, K. Peng, Ceram. Int. 46, 12675 (2020)

    Article  CAS  Google Scholar 

  29. R.J. Gorte, R.J. Gorte, AIChE J. 51, 2377 (2005)

    Article  CAS  Google Scholar 

  30. S. Banerjee, P.S. Devi, Solid State Ionics 179, 661 (2008)

    Article  CAS  Google Scholar 

  31. K. Zhao, G. Cheng, S. Hu, S. Ha, M.G. Norton, M. Chen, D. Chen, Q. Xu, B.H. Kim, Int. J. Hydrogen Energy 45, 29367 (2020)

    Article  CAS  Google Scholar 

  32. M.F.L. Garcia, A.J.M. Araújo, R.A. Raimundo, R.M. Nascimento, J.P.F. Grilo, D.A. Macedo, Int. J. Hydrogen Energy 46, 17374 (2021)

    Article  CAS  Google Scholar 

  33. N. Jaiswal, D. Kumar, S. Upadhyay, O. Parkash, Ionics (Kiel). 20, 45 (2014)

    Article  CAS  Google Scholar 

  34. W. Huang, P. Shuk, M. Greenblatt, Chem. Mater. 9, 2240 (1997)

    Article  CAS  Google Scholar 

  35. P.S. Ong, Y.P. Tan, Y.H. Taufiq-Yap, Z. Zainal, Mater. Sci. Eng. B 185, 26 (2014)

    Article  CAS  Google Scholar 

  36. N. Momin, J. Manjanna, S. Kobayashi, S. T. Aruna, S. Senthil Kumar, G. P. Nayaka, Mater. Adv. 3, 8780 (2022)

  37. G. Dönmez, V. Sarıboğa, T. Gürkaynak Altınçekiç, M. A. F. Öksüzömer, J. Am. Ceram. Soc. 98, 501 (2015)

  38. Y. Qu, J. Yu, N. Tian, H. Shen, RSC Adv. 11, 30911 (2021)

    Article  CAS  Google Scholar 

  39. X. Lin, Q. Lü, L. Zhu, X. Liu, J. Rare Earths 33, 411 (2015)

    Article  CAS  Google Scholar 

  40. Z.P. Li, T. Mori, J. Zou, J. Drennan, Phys. Chem. Chem. Phys. 14, 8369 (2012)

    Article  CAS  Google Scholar 

  41. Z.P. Li, T. Mori, J. Zou, J. Drennan, Mater. Res. Bull. 48, 807 (2013)

    Article  CAS  Google Scholar 

  42. M. Nakayama, M. Martin, Phys. Chem. Chem. Phys. 11, 3241 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by Istanbul University-Cerrahpaşa Research Fund through project no: 29931.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Faruk Öksüzömer.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ocakçı, E.E., Sarıboğa, V., Özdemir, H. et al. Ca, Sr or Mg-doped Ceria Electrolytes Prepared by Citrate-Nitrate Combustion Synthesis: Effect of Doping Concentration. J Electroceram 50, 67–81 (2023). https://doi.org/10.1007/s10832-023-00306-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-023-00306-0

Keywords

Navigation