Skip to main content
Log in

A new sol-gel synthesis of Mn3O4 oxide and its electrochemical behavior in alkaline medium

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this investigation, Mn3O4 spinel-type oxide was synthesized at low temperature using the Pechini process. We employed a sol-gel route, in which a solution of Mn(II) in a mixture of citric acid and ethylene glycol was heated to form a polymeric precursor, followed by annealing at lower temperature. The oxide obtained was identified by X-ray diffraction, scanning electron spectroscopy, and Raman spectroscopy. The results revealed that the formation of Mn3O4 hausmannite structure with a minor secondary phase of MnSO4 occurred at or above 280 °C. The sample powder consisted of fine grains with homogeneous morphology and an average size close to 1 μm was obtained. This new preparation procedure yielded an electrode oxide which appears to be a promising cathode material for fuel cells and metal-air batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zang W, Yang Z, Liu Y, Tang S, Han X, Chen MJ (2004) Cryst Growth 263:394

    Article  Google Scholar 

  2. Zhou G, Rong F, Xian-Hui C, Yi-Cheng W (2001) Inorg Chem Commun 4:294

    Article  Google Scholar 

  3. Weixin Z, Cheng W, Xiaoming Z, Yi X, Yitai Q (1999) Solid State Ionics 117:331

    Article  Google Scholar 

  4. Cimino S, Colonna S, De Rossi S, Faticanti M, Lisi L, Pettiti I, Porta P (2002) J Catal 205:309

    Article  CAS  Google Scholar 

  5. Mao L, Zhang D, Sotomura T, Nakatsu K, Koshiba N, Ohaka T (2003) Electrochim Acta 48:1015

    Article  CAS  Google Scholar 

  6. Ohsaka T, Mao L, Arihara K, Sotomura T (2004) Electrochem Commun 6:273

    Article  CAS  Google Scholar 

  7. Cao YL, Yang HX, Ai XP, Xiao LF (2003) J Electroanal Chem 557:127

    Article  CAS  Google Scholar 

  8. Klapste B, Vondrak J, Velicka J (2002) Electrochim Acta 47:2365

    Article  CAS  Google Scholar 

  9. Yang J, Xu JJ (2003) Electrochem Commun 5:306

    Article  CAS  Google Scholar 

  10. Keqiang D (2010) Russian Journal of Electrochemistry 46:461

    Article  Google Scholar 

  11. Gorkenko OYA, Grabry IE, Anelichev VA, Bosak AA, Kavel AR, Guttler B, Svetchnikov VL, Zandbergen HW (2002) Solid State Communications 124:15–20

    Article  Google Scholar 

  12. Teng F, Xu T, Liang S, Buergen G, Yao W, Zhu Y (2008) Catalysis Communications 9(6):1119–1124

    Article  CAS  Google Scholar 

  13. Ardizzone S, Bianch CL, Tirelli D (1998) Colloids Surf A: Physicochem Eng Aspects 134:305

    Article  CAS  Google Scholar 

  14. Pechini MP (1967) US Patent no. 3330676

  15. El Baydi M, Poillerat G, Rehspringer JL, Gautier JL, Koenig JF, Chartier P (1994) J Solid State Chem 109:281

    Article  CAS  Google Scholar 

  16. Chu CT, Dunn B (1987) J Am Ceram Soc C-375

  17. Baythoun MSG, Sale FR (1982) J Mater Sci 17:2757

    Article  CAS  Google Scholar 

  18. Kahoul A, Hammouche A (2010) Ionics 16:105–109

    Article  CAS  Google Scholar 

  19. Olmos AV, Redón R, Gattorno GR, Zamora MEM, Leal F, Osorio Ana LF, Saniger JM (2005) J Coll Interf Sci 291:175–180

    Article  Google Scholar 

  20. Boyero JM, Fernández EL, Gallardo-Amores JM, Ruano RC, Sánchez VE, Pérez EB (2001) Int J Inorg Mater 3:889

    Article  Google Scholar 

  21. Escax V, Impéror-Clerc M, Bazin D, Davidson A (2005) C R Chimie 8:663–677

    Article  CAS  Google Scholar 

  22. Yanga LX, Zhua YJ, Tonga H, Wanga WW, Cheng GF (2006) J Solid State Chemistry 179:1225–1229

    Article  Google Scholar 

  23. Bernard MC, Goff AHL, Thi BV (1993) J Electrochem Soc 140:3065

    Article  CAS  Google Scholar 

  24. Buciuman F, Patcas F, Craciun R, Zahn DRT (1999) Phys Chem Chem Phys 1:185

    Article  CAS  Google Scholar 

  25. Kapteijn F, Van Langeveld AD, Moulijn JA, Andreini A, Vuurman MA, Turek AM, Jehng JM, Wachs IE (1994) J Catal 150

  26. Hu CC, Wu YT, Chang KH (2008) Chem Mater 20(9):2890–2894

    Article  CAS  Google Scholar 

  27. Rogulski Z, Siwek H, Paleska I, Czerwinski A (2003) J Electroanal Chem 543:175–185

    Article  CAS  Google Scholar 

  28. Wu MQ, Snook GA, Chen GZ, Fray DG (2004) J Electrochem Commun 6:499–504

    Article  CAS  Google Scholar 

  29. Messaoudi B, Joiret S, Keddam M, Takenouti H (2001) Electrochimica Acta 46:2487–2498

    Article  CAS  Google Scholar 

  30. Hu CC, Liao SC, Chang KH, Yang YL, Lin KM (2010) J Power Sources 195(21):7259–7263

    Article  CAS  Google Scholar 

  31. Wei ZD, Huang WZ, Zhang ST, Tan J (2000) J App Electrochem 30:1133–1136

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the support of the Comité Mixte d’Evaluation et de Prospective de la Coopération Inter-universitaire Algéro-Française (CMEP) through Project No. 06 MDU 686.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Nâamoune.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nâamoune, F., Messaoudi, B., Kahoul, A. et al. A new sol-gel synthesis of Mn3O4 oxide and its electrochemical behavior in alkaline medium. Ionics 18, 365–370 (2012). https://doi.org/10.1007/s11581-011-0621-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-011-0621-8

Keywords

Navigation