Skip to main content
Log in

A new one-dimensional hybrid material lattice: AC conductivity and structural characterization of [C7H12N2][CdCl4]

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The present paper reports the synthesis, crystal structure, 13C and 111Cd cross-polarization magic-angle spinning nuclear magnetic resonance(CP-MAS-NMR) analysis and ac conductivity for a new organic–inorganic hybrid salt, [C7H12N2][CdCl4]. The compound crystallizes in the triclinic system, space group P\( \overline 1 \), with unit cell dimensions: a = 7.1050(3) Å, b = 8.9579(3) Å, c = 9.4482(3) Å, α = 81.415(1)°, β = 89.710(2)°, γ = 85.765(1)°, V = 592.97(4) Å3, and Z = 2. The asymmetric unit is composed of one-2,4-diammonium toluene cation and one [CdCl4]2− anion. The Cd atom is in a slightly distorted octahedra coordination environment. Its structure can be described by infinite chains of CdCl6 octahedron linked to organic cations by a strong charge-assisted N–H∙∙∙Cl interactions in order to build organic–inorganic layers staked along \( \left[ {0\overline 1 1} \right] \) direction. The solid state 13C CP-MAS-NMR spectra has shown seven isotropic resonances, confirming the existence of seven non-equivalent carbon atoms, which is consistent with crystal structure determined by X-ray diffraction. As for 111Cd MAS-NMR, it has shown one cadmium site with isotropic chemical shift observed at 167.2 ppm. The complex impedance of the compound has been investigated in the temperature range of 403–460 K and in the frequency range of 200 Hz–5 MHz. The impedance plots have shown semicircle arcs at different temperatures and an electrical equivalent circuit has been proposed to explain the impedance results. The circuits consist of the parallel combination of bulk resistance R p and constant phase elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Min KS, Suh MP (2000) J Am Chem Soc 122:6834

    Article  CAS  Google Scholar 

  2. Fan J, Gan L, Kawaguchi H, Sun WY, Yu KB, Tang WX (2003) Chem Eur J 9:3965

    Article  CAS  Google Scholar 

  3. Fletcher AJ, Cussen EJ, Bradshaw D, Rosseinsky MJ, Thomas KMJ (2004) Am Chem Soc 126:9750

    Article  CAS  Google Scholar 

  4. Chun H, Dybtsev DN, Kim H, Kim K (2005) Chem Eur J 11:3521

    Article  CAS  Google Scholar 

  5. Mines GA, Tzeng BC, Stevenson KJ, Li J, Hupp JT (2002) Angew Chem Int Ed 41:154

    Article  CAS  Google Scholar 

  6. Yoo SK, Ryu JY, Lee JY, Kim C, Kim SJ, Kim Y (2003) Dalton Trans 1454. doi:10.1039/B301082A

  7. Han H, Zhang S, Hou H, Fan Y, Zhu Y (2006) Eur J Inorg Chem 8:1594

    Article  Google Scholar 

  8. Dybtsev DN, Nuzhdin AL, Chun H, Bryliakov KP, Talsi EP, Fedin VP, Kim K (2006) Angew Chem Int Ed 45:916

    Article  CAS  Google Scholar 

  9. Hasegawa S, Horike S, Matsuda R, Furukawa S, Mochizuki K, Kinoshita Y, Kitagawa SJ (2007) Am Chem Soc 129:2607

    Article  CAS  Google Scholar 

  10. Kato Y, Ichii D, Ohashi K, Kunugita H, Ema K, Tanaka K, Takahashi T, Kondo T (2003) Solid State Commun 128:15

    Article  CAS  Google Scholar 

  11. El-Korashy A, Brik MG (2005) Solid State Commun 135:298

    Article  CAS  Google Scholar 

  12. Riou-Cavellec M, Albinet C, Greneche JM, Ferey G (2001) J Mater Chem 11:3166

    Article  CAS  Google Scholar 

  13. Lach G, Laskowski L, Kityk IV, Kapustianyk V, Rudyk V, Shchur Y, Tkaczyk S, Swiatek J, Piasecki M (2007) J NonCrystalline Solid 353:4353

    Article  CAS  Google Scholar 

  14. Hong X, Ishihara T, Nurmikko AV (1992) Phys Rev B45:6961

    Google Scholar 

  15. Fujisawa J, Ishihara T (2004) Phys Rev B70:113203

    Google Scholar 

  16. Pons J, Antń JG, Bardia MF, Calvet T, Ros J (2009) Inorg Chim Acta 362:2698

    Article  CAS  Google Scholar 

  17. Salamakha P, Sologub O, Demchenko P, Righi L, Bocelli G (2002) J Alloy Compd 335:142

    Article  CAS  Google Scholar 

  18. Olekseyuk ID, Gulay LD, Dydchak IV, Piskach LV, Parasyuk OV, Marchuk OV (2002) J Alloy Compd 340:141

    Article  CAS  Google Scholar 

  19. Smart & SAINT Software Reference Manuals, Version 6.22 (2001). Bruker AXS, Analytical Instrumentation, Madison, Wisconsin, USA

  20. Sheldrick GM (2004) SADABS. University of Göttingen, Germany

    Google Scholar 

  21. Macardle P (1996) J Appl Cryst 29:306

    Article  Google Scholar 

  22. Sheldrick GM (1986) SHELXS-86, Program for Crystal Structure solution. University of Göttingen, Germany

    Google Scholar 

  23. Sheldrick GM (1997) SHELXL-97, Program for crystal structure refinement. University of Göttingen, Germany

    Google Scholar 

  24. Massiot D, Theile H, Germany A (1994) Bruker Rep 43:140

    Google Scholar 

  25. Brown ID (1976) Acta Cryst A32:24

    Google Scholar 

  26. Jin ZM, Shun N, Lü YP, Hu ML, Shen L (2005) Acta Cryst C61:m43

    CAS  Google Scholar 

  27. Rademeyer M (2005) Acta Cryst E61:m304

    CAS  Google Scholar 

  28. Chaabane I, Hlel F, Guidara K (2008) PMC Physics B 1:11. doi:10.1186/1754-0429-1-11

    Article  Google Scholar 

  29. Qiang Y, Qin-jing M, Xiao-zeng Y, Xiao-ying H (1996) Acta Cryst C52:33

    Google Scholar 

  30. Hlel F, Thouvenot R, Smiri L (2005) Phys Stat Sol (b) 242:1243

    Article  CAS  Google Scholar 

  31. Galka HC, Gade LH (2004) Inorg Chim Acta 357:1725

    Article  CAS  Google Scholar 

  32. Sakida S, Kawamoto Y (2002) J Phys Chem Solid 63:151

    Article  CAS  Google Scholar 

  33. Nadeem M, Akhtar MJ, Khan AY (2005) Solid State Commun 134:431

    Article  CAS  Google Scholar 

  34. Muralidharan P, Venkateswarlu M, Satyanarayana N (2005) J NonCryst Solid 351:583

    Article  CAS  Google Scholar 

  35. Rao KS, Prasad DM, Krishna PM, Tilak B, Varadarajulu KC (2006) Mater Sci Eng B133:141

    Google Scholar 

  36. Ayouchi R, Leien D, Martin F, Gabas M, Dalchiele E, Ramos-Barrodo JR (2003) Thin Solid Films 426:68

    Article  CAS  Google Scholar 

  37. Fan CL, Ciardullo D, Huebrier W (2003) Mater Sci Eng B100:1

    Article  CAS  Google Scholar 

  38. Réau JM, Rossignol S, Tanguy B, Rojo JM, Herrero P, Rojas RM, Sanz J (1994) Solid State Ionics 74:65

    Article  Google Scholar 

  39. Jonscher AK (1974) Nature 250:191

    Article  CAS  Google Scholar 

  40. Jain H, Mundy JN (1987) J NonCryst Solids 91:315

    Article  CAS  Google Scholar 

  41. Dyre JC, Schroder TB (2000) Rev Mod Phys 72:873

    Article  Google Scholar 

  42. Ben Rhaiem A, Zouari N, Guidara K, Gargouri M, Daoud A (2005) J Alloys Compd 387:1–5

    Article  CAS  Google Scholar 

  43. Hazara S, Chosh A (1996) Philosophical B74(3):235

    Google Scholar 

  44. Mott NF, Davis EA (1979) Electronic Processes in Non-Crystalline Materials, 2nd edn. Clarendon, Oxford

    Google Scholar 

  45. Botthger H, Bryksin VV (1976) Phys Status Solidi B78:415

    Article  Google Scholar 

  46. Long AR (1982) Adv Phys 31:553

    Article  CAS  Google Scholar 

  47. Elliott SR (1987) Adv Phys 36:135

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faouzi Hlel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(CIF 19.3 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarboui, A., Ousleti, A., Adil, K. et al. A new one-dimensional hybrid material lattice: AC conductivity and structural characterization of [C7H12N2][CdCl4]. Ionics 17, 145–155 (2011). https://doi.org/10.1007/s11581-010-0495-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-010-0495-1

Keywords

Navigation