Skip to main content
Log in

A study on the blending effect of polyvinyledene fluoride in the ionic transport mechanism of plasticized polyvinyl chloride + lithium perchlorate gel polymer electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The gel polymer electrolytes composed of the blend of polyvinylchloride (PVC) and polyvinylidene fluoride (PVdF) as host polymers, the mixture of ethylene carbonate (EC) and propylene carbonate (PC) as a plasticizer, and LiClO4 as a salt was studied. An attempt was made to investigate the effect of PVdF in the plasticized PVC + LiClO4 system in three blend ratios. The differential scanning calorimetry study confirms the formation of polymer–salt complex and miscibility of the PVC and PVdF. The X-ray diffraction results of plasticized PVC (S1, S2, S3) and PVdF-blended films (S4, S5, S6) were compared, in that an increase in PVC concentration decreases the degree of crystallinity for S1 and S3, respectively, but drastically increases for PVC (S2). The increase in PVC content has not accounted in the conductivity studies also noted. However, the blending effect of PVdF showed decreases in crystallinity homogeneously for (S6 > S5 > S4), which were reflected in ionic conductivity measurements. The surface morphology of the films were also studied by scanning electron microscope, and it corroborates the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abraham KM (1993) Electrochim Acta 38:1223

    Article  Google Scholar 

  2. Croce F, Gerace F, Dautzemberg G, Passerini S, Appetecchi GB, Scrosati B (1993) Electrochim Acta 39(14):2187

    Google Scholar 

  3. Kim HS, Wicho B, Kim JT, Yun KS, Chun HS (1996) J Power Sources 62:21

    Article  CAS  Google Scholar 

  4. Alangir M, Abraham KM (1993) J Electrochem Soc 140(6):L96

    Article  Google Scholar 

  5. Pistoia G, Anotonini A, Wang G (1996) J Power Sources 52(2):1319

    Google Scholar 

  6. Tsuninimi K, Ohono H, Tsuchida E (1983) Electrochim Acta 28(6):833

    Article  Google Scholar 

  7. Tsuchida E, Suninimi KT, Ohono H (1983) Electrochim Acta 28(5):591

    Article  CAS  Google Scholar 

  8. Jiang Z, Karrol B, Abraham KM (1997) Electrochim Acta 42:2667

    Article  CAS  Google Scholar 

  9. Gozdz AS, Tarascon JM, Gebizlioglu OS, Schmutz CN, Warren PC, Shokoohi FK (1994) Electrochem Soc Proc 94–98:400

    Google Scholar 

  10. Feuillade G, Perche Ph (1975) J Appl Electrochem 5:63

    Article  CAS  Google Scholar 

  11. Lijima T, Tyoguchi Y, Eda N (1985) Denki Kagaku 53:619

    Google Scholar 

  12. Bhonhe O, Frand G, Rezrai M, Rousselot C, Truche C (1993) Solid State Ion 66:97

    Article  Google Scholar 

  13. Bohnke O, Frand G, Rezrai M, Rousselt C, Truche C (1993) Solid State Ion 66:105

    Article  CAS  Google Scholar 

  14. Sung HY, Wang YY, Chaowan C (1998) J Electrochem Soc 145:1207

    Article  CAS  Google Scholar 

  15. Watanabe M, Kanba M, Matsuda H, Mizoguchi K, Shinohara I, Tsuchida E, Tsunemi K (1981) Makromol Chem Rapid Commun 2:741

    Article  CAS  Google Scholar 

  16. Song JY, Wan YY, Wan CC (1999) J Power Sources 77:183

    Article  CAS  Google Scholar 

  17. Carre C, Hamaide T, Guiot A, Mai C (1988) Br Polym J 20:269

    Article  CAS  Google Scholar 

  18. Orihara J, Yonecara H (1990) J Macromol Sci 27A:1217

    Google Scholar 

  19. Przyluski J, Such K, Wycislik H, Wieczook W, Florianczyk Z (1990) Synth Met 35:241

    Article  CAS  Google Scholar 

  20. Florjanezyk Z, Krawice W, Gresta D, Wieczorek W, Siekierski M (1992) Bull Electrochem 8:524

    Google Scholar 

  21. Wieczorek W, Such K, Florjanczyk Z, Prezyluski J (1992) Electrochim Acta 37:1565

    Article  CAS  Google Scholar 

  22. Florjanczyk Z, Wieczoerk W (1994) Solid State Phenom 29–40:161

    Article  Google Scholar 

  23. Paullmer RDA, Kullkarni AR (1994) Solid State Ion 68:243

    Article  Google Scholar 

  24. Alamgir M, Moulton RD, Abraham KM (1991) In: Abraham KM, Salomon M (eds) Proc Symp, primary and secondary lithium batteries, vol. 91–93. The Electrochem Soc, Pennington, NJ, p 131

    Google Scholar 

  25. Abraham KM, Alangir M (1990) J Electrochem Soc 137:1657

    Article  CAS  Google Scholar 

  26. Abraham KM (1993) Electrochim Acta 38:1233

    Article  CAS  Google Scholar 

  27. Hong W, Liquan C, Xueje H, Rorgian X (1992) Electrochim Acta 37:1671

    Article  Google Scholar 

  28. Armand MB (1980) In: Yeager EB, Schumm B, Blomgren G, Blankenship DR, Leger V, Akridge J (eds) Proc workshop on lithium non-aqueous battery electorchemistry, vol. 80–87. The Lectochem Soc, Pennigton, NJ, pp 261–275

    Google Scholar 

  29. Ue M, Kaitoh M, Yasukawa E, Mori S (1993) Electochim Acta 38:1301

    Article  CAS  Google Scholar 

  30. Bohnke O, Rousselot C, Gillet PA, Truche C (1992) J Electrochem Soc 139:1862

    Article  CAS  Google Scholar 

  31. Alamgir M, Abraham KM (1997) J Electrochem Soc 140:L96

    Article  Google Scholar 

  32. Kelly IE, Owen JR, Steele BCH (1985) J Power Sources 14:439

    Article  Google Scholar 

  33. Matsuda Y, Morita M, Tsutsumi H (1993) J Power Sources 43/44:439

    Article  Google Scholar 

  34. Nagasubramanian G, Di ste fano S (1990) In: Subbarao S, Koch VR, Owens BB, Smyh WH (eds) Proc symp rechargeable lithium batteries, vol. 90–95. The Electrochem Soc, Pennigton, NJ, p 262

    Google Scholar 

  35. Guglielmi M, Aldebert P, Pineri M (1989) J Appl Electrochem 19:167

    Article  CAS  Google Scholar 

  36. Shigehara K, Kobayashi N, Tsuchda E (1984) Solid State Ion 14:85

    Article  CAS  Google Scholar 

  37. Baochen M, Li F, Yangayo X (1993) J Power Sources 43–44:83

    Article  Google Scholar 

  38. Andriew X, Boeune JP, Vicedo T (1993) J Power Sources 43–44:445

    Article  Google Scholar 

  39. Ballard DGH, Chesine P, Mann TS, Prezeworski JE (1990) Macromol 23:1256

    Article  CAS  Google Scholar 

  40. Takahashi T, Ashitaka H (1990) J Electrochem Soc 137:3401

    Article  Google Scholar 

  41. Huq R, Tarrington C, Kokshong R, Tonder PE (1991) In: Abraham KM, Salomon M (eds) Proc symp primary and secondary. The Electrochem Soc, Pennigton, NJ, p 142

    Google Scholar 

  42. Muniyandi N, Kalaiselvi N, Periasamy P, Thirunakaran R, Ramesh babu B, Gopukumar S, Prem kumar T, Renganathan NG, Raghavan M (2001) J Power Sources 96:14

    Article  CAS  Google Scholar 

  43. Rhoo HJ, Kim HT, Park JK, Hwang JS (1997) Electrochim Acta 42:1571

    Article  CAS  Google Scholar 

  44. Bair HE, Warren PC (1981) J Macromol Sci Phys B20:381

    CAS  Google Scholar 

  45. Douglass DC (1980) Acs Symp Ser 142:147

    Article  CAS  Google Scholar 

  46. Beirnes KJ, Burns CH (1986) J Appl Polymer Sci 31:2561

    Article  CAS  Google Scholar 

  47. Teyssedre G, Bernes A, Lacabanne C (1993) J Therm Anal 40:711

    Article  CAS  Google Scholar 

  48. Kim KM, Ko JM, Park NG, Ryu KS, Chang SH (2003) Solid State Ion 161:121

    Article  CAS  Google Scholar 

  49. Dohany JE, Humphery JS (1989) In: Kroschivtz JI (ed) Encyclopaedia of polymer science and engineering, vol. 17. 2nd edn. Wiley, New York, p 532

    Google Scholar 

  50. Vickraman P, Ramamurthy S (2006) Mater Lett 60:3431

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vickraman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vickraman, P., Aravindan, V. & Shankarasubramanian, N. A study on the blending effect of polyvinyledene fluoride in the ionic transport mechanism of plasticized polyvinyl chloride + lithium perchlorate gel polymer electrolytes. Ionics 13, 355–360 (2007). https://doi.org/10.1007/s11581-007-0125-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-007-0125-8

Keywords

Navigation