Skip to main content
Log in

Low temperature processing of dense samarium-doped CeO2 ceramics: sintering and intermediate temperature ionic conductivity

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Samarium-doped Ceria powders for solid electrolyte ceramics were synthesized by a combustion process. Cerium nitrate and samarium nitrate were used as the starting materials, and glycine was used as fuel. Decomposition of unburned nitrogen and carbon residues was investigated by simultaneous thermogravimetry analysis and differential thermal analysis experiments. The X-ray diffraction results showed that the single-phase fluorite structure forms at a relatively low calcination temperature of 800 °C. X-rays patterns of the SDC powders revealed that the crystallite size of the powders increases with increasing calcination temperature. The sintering behavior results showed that more than 96% of the relative density is obtained for powders sintered at 1,100 °C for 8 h. The alternating current impedance spectroscopy results showed that the SDC15 sample sintered at 1,100 °C has ionic conductivity of 0.015 Scm−1at 650 °C in air. The present work results have indicated that glycine–nitrate route is a relatively low-temperature preparation technique to synthesize SDC powders with a high sinterability and a good ionic conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Will J, Mitterdorfer A, Keinlogel C, Perednis D, Gauckler IJ (2000) Solid State Ion 131:79

    Article  CAS  Google Scholar 

  2. Huijsmans, JPP, Van Berkei FPF, Khristie GM (1998) J Power Sources 71:107

    Article  CAS  Google Scholar 

  3. Yahiro H, Eguchi Y, Eguchi K, Arai H (1998) J Appl Electrochem 18:527

    Article  Google Scholar 

  4. Steele BCH (2000) Solid State Ion 129:95

    Article  CAS  Google Scholar 

  5. Yahiro H, Eguchi Y, Eguchi K, Arai H (1989) Solid State Ion 36:71

    Article  CAS  Google Scholar 

  6. Huage W, Shuk P, Green Blatt M (1997) Solid State Ion 100:23

    Article  Google Scholar 

  7. Chung DY, Lee EH (2004) J Alloys Compd 314:69

    Article  Google Scholar 

  8. Li JG, Ikegami T, Mori T (2004) Acta Materialia 52:2221

    Article  CAS  Google Scholar 

  9. Wang W, Inaba H, Tagawa H, Hashimoto T (1997) J Electrochem Soc 144:4077

    Google Scholar 

  10. Maffei N, Kuriakose AK (1998) Solid State Ion 107:67

    Article  CAS  Google Scholar 

  11. Reiss I, Braunshtein D, Tannhause DS (1981) J Am Ceram Soc 64:479

    Article  Google Scholar 

  12. Van Herle J, Horita T, Kawada T, Sakai N, Yokokawa H, Dokiya M (1996) Solid State Ion 86–88:1255

    Google Scholar 

  13. Hong SJ, Mehta K, Virkar AV (1998) J Electrochem Soc 145:638

    Article  CAS  Google Scholar 

  14. Yamashita K, Ramanujachary KV, Greenblatt M (1995) Solid State Ion 81:53–60

    Article  CAS  Google Scholar 

  15. Purohit RD, Sharma BP, Pillai KT, Tyagi AK (2001) Mater Res Bull 36:2711

    Article  CAS  Google Scholar 

  16. Purohit RD, Sharma BP, Tyagi AK (2000) J Nucl Mater 288:51

    Article  Google Scholar 

  17. Kingsley JJ, Suresh K, Patil KC (1990) J Mater Sci 25:1305

    CAS  Google Scholar 

  18. Purohit RD, Saha S, Tyagi AK (2006) Ceram Int 32:143

    Article  CAS  Google Scholar 

  19. Shea LF, Mackittrick J, Lopez OA (1996) J Am Ceram Soc 79:3257

    Article  CAS  Google Scholar 

  20. KudoT, Obayashi H (1975) J Electrochem Soc 122(1):142

    Article  Google Scholar 

  21. Zha S, Xia C, Meng G (2003) J Power Sources 115:44

    Article  CAS  Google Scholar 

  22. Eguchi K, Setoguchi T, Inoue T, Arai H (1992) Solid State Ion 52:165

    Article  CAS  Google Scholar 

  23. Atsuta K, Civiello MD, Pacaid B, Seguelong T, Suda E (2002) In: Huijsmans J (ed) Proceedings of Fifth European Solid OFC Forum. ISBN 3905592-10-x, 1–5July

  24. Torrens RS, Sammes NM, Tompsett GA (1998) Solid State Ion 111:479

    Article  Google Scholar 

  25. Mori T, Wang Y, Drennan J, Auchterlonie G, Li JG, Ikegami T (2004) Solid State Ion 175:641

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, K., Acharya, S.A. & Bhoga, S.S. Low temperature processing of dense samarium-doped CeO2 ceramics: sintering and intermediate temperature ionic conductivity. Ionics 13, 429–434 (2007). https://doi.org/10.1007/s11581-007-0123-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-007-0123-x

Keywords

Navigation