Skip to main content
Log in

Combined nonlinear metrics to evaluate spontaneous EEG recordings from chronic spinal cord injury in a rat model: a pilot study

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is a high-cost disability and may cause permanent loss of movement and sensation below the injury location. The chance of cure in human after SCI is extremely limited. Instead, neural regeneration could have been seen in animals after SCI, and such regeneration could be retarded by blocking neural plasticity pathways, showing the importance of neural plasticity in functional recovery. As an indicator of nonlinear dynamics in the brain, sample entropy was used here in combination with detrended fluctuation analysis (DFA) and Kolmogorov complexity to quantify functional plasticity changes in spontaneous EEG recordings of rats before and after SCI. The results showed that the sample entropy values were decreased at the first day following injury then gradually increased during recovery. DFA and Kolmogorov complexity results were in consistent with sample entropy, showing the complexity of the EEG time series was lost after injury and partially regained in 1 week. The tendency to regain complexity is in line with the observation of behavioral rehabilitation. A critical time point was found during the recovery process after SCI. Our preliminary results suggested that the combined use of these nonlinear dynamical metrics could provide a quantitative and predictive way to assess the change of neural plasticity in a spinal cord injury rat model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abásolo D, Hornero R, Espino P, Alvarez D, Poza J (2006) Entropy analysis of the EEG background activity in Alzheimer’s disease patients. Physiol Meas 27:241

    Article  PubMed  Google Scholar 

  • Ahmed MU, Mandic DP (2011) Multivariate multiscale entropy: a tool for complexity analysis of multichannel data. Phys Rev E 84:061918

    Article  Google Scholar 

  • Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349

    CAS  PubMed  Google Scholar 

  • Burns AS, O’Connell C (2012) The challenge of spinal cord injury care in the developing world. J Spinal Cord Med 35:3–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Capano V, Herrmann HJ, de Arcangelis L (2015) Optimal percentage of inhibitory synapses in multi-task learning. Sci Rep 5:1–5

    Article  Google Scholar 

  • Cirugeda-Roldan E, Cuesta-Frau D, Miro-Martinez P, Oltra-Crespo S (2014) Comparative study of entropy sensitivity to missing biosignal data. Entropy 16:5901–5918

    Article  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21

    Article  PubMed  Google Scholar 

  • Dietz V (2006) Neuronal plasticity after spinal cord injury: significance for present and future treatments. J Spinal Cord Med 29:481

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgerton VR, Roy RR (2009) Robotic training and spinal cord plasticity. Brain Res Bull 78:4–12

    Article  PubMed  Google Scholar 

  • Eng JJ et al (2007) Spinal cord injury rehabilitation evidence: method of the SCIRE systematic review. Top Spinal Cord Inj Rehabil 13:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Escudero J, Acar E, Fernández A, Bro R (2015) Multiscale entropy analysis of resting-state magnetoencephalogram with tensor factorisations in Alzheimer’s disease. Brain Res Bull 119:136–144

    Article  PubMed  Google Scholar 

  • Freund P et al (2011) Disability, atrophy and cortical reorganization following spinal cord injury. Brain 134:1610–1622

    Article  PubMed  PubMed Central  Google Scholar 

  • Freund P et al (2013) MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study. Lancet Neurol 12:873–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Hu J, Tung W-W (2011) Complexity measures of brain wave dynamics. Cogn Neurodyn 5:171–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao L, Wang J, Chen L (2013) Event-related desynchronization and synchronization quantification in motor-related EEG by Kolmogorov entropy. J Neural Eng 10:036023

    Article  PubMed  Google Scholar 

  • Goldberger AL et al (2000) Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals. Circulation 101:e215–e220

    Article  CAS  PubMed  Google Scholar 

  • Gosseries O et al (2011) Automated EEG entropy measurements in coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state. Funct Neurol 26:25–30

    PubMed  PubMed Central  Google Scholar 

  • Hains BC, Black JA, Waxman SG (2003) Primary cortical motor neurons undergo apoptosis after axotomizing spinal cord injury. J Comp Neurol 462:328–341

    Article  PubMed  Google Scholar 

  • Hou J-M et al (2014) Brain sensorimotor system atrophy during the early stage of spinal cord injury in humans. Neuroscience 266:208–215

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Wen C-Y, Li T-H, Cheung MM-H, Wu EX-K, Luk KD-K (2011) Somatosensory-evoked potentials as an indicator for the extent of ultrastructural damage of the spinal cord after chronic compressive injuries in a rat model. Clin Neurophysiol 122:1440–1447

    Article  PubMed  Google Scholar 

  • Ibáñez-Molina AJ, Iglesias-Parro S, Soriano MF, Aznarte JI (2015) Multiscale Lempel-Ziv complexity for EEG measures. Clin Neurophysiol 126:541–548

    Article  PubMed  Google Scholar 

  • Jurkiewicz M, Crawley A, Verrier M, Fehlings M, Mikulis D (2006) Somatosensory cortical atrophy after spinal cord injury: a voxel-based morphometry study. Neurology 66:762–764

    Article  CAS  PubMed  Google Scholar 

  • Jurkiewicz MT, Mikulis DJ, McIlroy WE, Fehlings MG, Verrier MC (2007) Sensorimotor cortical plasticity during recovery following spinal cord injury: a longitudinal fMRI study. Neurorehabil Neural Repair 21:527–538

    Article  PubMed  Google Scholar 

  • Kaspar F, Schuster H (1987) Easily calculable measure for the complexity of spatiotemporal patterns. Phys Rev A 36:842

    Article  Google Scholar 

  • Koch C, Laurent G (1999) Complexity and the nervous system. Science 284:96–98

    Article  CAS  PubMed  Google Scholar 

  • Lee J-M, Kim D-J, Kim I-Y, Park KS, Kim SI (2004) Nonlinear-analysis of human sleep EEG using detrended fluctuation analysis. Med Eng Phys 26:773–776

    Article  PubMed  Google Scholar 

  • Lee J-S, Yang B-H, Lee J-H, Choi J-H, Choi I-G, Kim S-B (2007) Detrended fluctuation analysis of resting EEG in depressed outpatients and healthy controls. Clin Neurophysiol 118:2489–2496

    Article  PubMed  Google Scholar 

  • Liang Z et al (2015) EEG entropy measures in anesthesia. Front Comput Neurosci 9:1–17

    Article  Google Scholar 

  • Linkenkaer-Hansen K, Nikouline VV, Palva JM, Ilmoniemi RJ (2001) Long-range temporal correlations and scaling behavior in human brain oscillations. J Neurosci 21:1370–1377

    CAS  PubMed  Google Scholar 

  • Long H-Q, Li G-S, Lin E-J, Xie W-H, Chen W-L, Luk KD-K, Hu Y (2013) Is the speed of chronic compression an important factor for chronic spinal cord injury rat model? Neurosci Lett 545:75–80

    Article  CAS  PubMed  Google Scholar 

  • Nardone R et al (2013) Functional brain reorganization after spinal cord injury: systematic review of animal and human studies. Brain Res 1504:58–73

    Article  CAS  PubMed  Google Scholar 

  • Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci 88:2297–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pu J, Gong H, Li X, Luo Q (2013) Developing neuronal networks: self-organized criticality predicts the future. Sci Rep 3:1–6

    Article  Google Scholar 

  • Pu J, Xu H, Wang Y, Cui H, Hu Y (2016) Nonlinear dynamical analysis of spontaneous eeg recordings in rats after chronic spinal cord injury. In: Wang R, Pan X (eds) Advances in cognitive neurodynamics (V). Springer, pp 143–149

  • Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278:H2039–H2049

    CAS  PubMed  Google Scholar 

  • Scheff SW, Saucier DA, Cain ME (2002) A statistical method for analyzing rating scale data: the BBB locomotor score. J Neurotrauma 19:1251–1260

    Article  PubMed  Google Scholar 

  • Schwab ME (2002) Repairing the injured spinal cord. Science 295:1029–1031

    Article  CAS  PubMed  Google Scholar 

  • Serra-Añó P, Montesinos L, Morales J, López-Bueno L, Gomis M, García-Massó X, González L (2014) Heart rate variability in individuals with thoracic spinal cord injury. Spinal Cord 53:59–63

    Article  PubMed  Google Scholar 

  • Stepp N, Plenz D, Srinivasa N (2015) Synaptic plasticity enables adaptive self-tuning critical networks. PLoS Comput Biol 11:1–28

    Article  Google Scholar 

  • Teixeira A, Matos A, Souto A, Antunes L (2011) Entropy measures vs. Kolmogorov complexity. Entropy 13:595–611

    Article  CAS  Google Scholar 

  • Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci 91:5033–5037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toutounji H, Pipa G (2014) Spatiotemporal computations of an excitable and plastic brain: neuronal plasticity leads to noise-robust and noise-constructive computations. PLoS Comput Biol 10:e1003512

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong YJ, Zhang R, Zhang C, Yu XL (2013) A novel estimation method of fatigue using EEG based on KPCA-SVM and complexity parameters. In: Kim Y-H (ed) Applied mechanics and materials, vol 373–375. Trans Tech Publ, pp 965–969

  • Zhou F, Gong H, Liu X, Wu L, Luk KD-K, Hu Y (2014) Increased low-frequency oscillation amplitude of sensorimotor cortex associated with the severity of structural impairment in cervical myelopathy. PLoS One 9(8):e104442

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 81271685, 61501524), the Fundamental Research Funds for the Central Universities and PUMC Youth Fund (No. 3332015119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, J., Xu, H., Wang, Y. et al. Combined nonlinear metrics to evaluate spontaneous EEG recordings from chronic spinal cord injury in a rat model: a pilot study. Cogn Neurodyn 10, 367–373 (2016). https://doi.org/10.1007/s11571-016-9394-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-016-9394-0

Keywords

Navigation