Skip to main content

Advertisement

Log in

Multiscale Analysis of Heart Rate Variability: A Comparison of Different Complexity Measures

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Heart rate variability (HRV) is an important dynamical variable of the cardiovascular function. There have been numerous efforts to determine whether HRV dynamics are chaotic or random, and whether certain complexity measures are capable of distinguishing healthy subjects from patients with certain cardiac disease. In this study, we employ a new multiscale complexity measure, the scale-dependent Lyapunov exponent (SDLE), to characterize the relative importance of nonlinear, chaotic, and stochastic dynamics in HRV of healthy, congestive heart failure (CHF), and atrial fibrillation subjects. We show that while HRV data of all these three types are mostly stochastic, the stochasticity is different among the three groups. Furthermore, we show that for the purpose of distinguishing healthy subjects from patients with CHF, features derived from SDLE are more effective than other complexity measures such as the Hurst parameter, the sample entropy, and the multiscale entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 10

Similar content being viewed by others

References

  1. Ashkenazy, Y., P. Ivanov, S. Havlin, C. Peng, A. Goldberger, and H. Stanley. Magnitude and sign correlations in heartbeat fluctuations. Phys. Rev. Lett. 86:1900–1903, 2001

    Article  CAS  PubMed  Google Scholar 

  2. Bigger, J., R. Steinman, L. Rolnitzky, J. Fleiss, P. Albrecht, and R. Cohen. Power law behavior of rr-interval variability in healthy middle-aged persons, patients with recent acute myocardial infarction, and patients with heart transplants. Circulation 93:2142–2151, 1996

    PubMed  Google Scholar 

  3. Costa, M., A. Goldberger, and C. Peng. Multiscale entropy analysis of biological signals. Phys. Rev. E 71:021–906, 2005

    Google Scholar 

  4. Gao, J., Y. Cao, W. Tung, and J. Hu. Multiscale Analysis of Complex Time Series—Integration of Chaos and Random Fractal Theory, and Beyond. Wiley, NJ, 2007

  5. Gao, J., C. Chen, S. Hwang, and J. Liu. Noise-induced chaos. Int. J. Mod. Phys. B 13:3283–3305, 1999

    Article  Google Scholar 

  6. Gao, J., S. Hwang, and J. Liu. When can noise induce chaos? Phys. Rev. Lett. 82:1132–1135, 1999

    Article  CAS  Google Scholar 

  7. Gao, J., J. Hu, W. Tung, and Y. Cao. Distinguishing chaos from noise by scale-dependent lyapunov exponent. Phys. Rev. E 74:066204, 2006

    Article  CAS  Google Scholar 

  8. Gao, J., J. Hu, W. Tung, Y. Cao, N. Sarshar, and V. Roychowdhury. Assessment of long range correlation in time series: how to avoid pitfalls. Phys. Rev. E 73:016117, 2000

    Article  CAS  Google Scholar 

  9. Gao, J., W. Tung, and J. Hu. Quantifying dynamical predictability: the pseudo-ensemble approach. Chi. Ann. Math. Ser. B 30:569–588, 2009

    Article  Google Scholar 

  10. Gao, J., and Z. Zheng. Local exponential divergence plot and optimal embedding of a chaotic time series. Phys. Lett. A 181:153–158, 1993

    Article  Google Scholar 

  11. Gao, J., and Z. Zheng. Direct dynamical test for deterministic chaos. Europhys. Lett. 25:485–490, 1998

    Article  Google Scholar 

  12. Gao, J., and Z. Zheng, Direct dynamical test for deterministic chaos and optimal embedding of a chaotic time series. Phys. Rev. E 49:3807–3814, 1994

    Article  Google Scholar 

  13. Gaspard, P., and X. Wang. Noise, chaos, and (ε, τ)-entropy per unit time. Phys. Rep. 235:291–343, 1993

    Article  Google Scholar 

  14. Grassberger, P., and I. Procaccia. Characterization of strange attractors. Phys. Rev. Lett. 50:346–349, 1983

    Article  Google Scholar 

  15. Grassberger, P., and I. Procaccia. Estimation of the kolmogorov entropy from a chaotic signal. Phys. Rev. A 28:2591–2593, 1983

    Article  Google Scholar 

  16. Hu, J., J. Gao, and W. Tung. Characterizing heart rate variability by scale-dependent lyapunov exponent. Chaos 19:028506, 2009

    Article  PubMed  Google Scholar 

  17. Hwang, K., J. Gao, and J. Liu. Noise-induced chaos in an optically injected semiconductor laser. Phys. Rev. E 61:5162–5170, 2000

    Article  CAS  Google Scholar 

  18. Ivanov, P., L. Amaral, A. Goldberger, S. Havlin, M. Rosenblum, Z. Struzik, and H. Stanley. Multifractality in human heartbeat dynamics. Nature 399:461–465, 1999

    Article  CAS  PubMed  Google Scholar 

  19. Kanters, J., N. Holstein-Rathlou, and E. Agner. Lack of evidence for low-dimensional chaos in heart rate variability. J. Cardiovasc. Electrophysiol. 5:591–601, 1994

    Article  CAS  PubMed  Google Scholar 

  20. Kobayashi, M., and T. Musha. 1/f fluctuation of heart beat period. IEEE Trans. Biomed. Eng. 29:456–457, 1982

    Article  CAS  PubMed  Google Scholar 

  21. Osaka, M., K. Chon, and R. Cohen. Distinguishing cardiac randomness from chaos. J. Cardiovasc. Electrophysiol. 6:441–442, 1995

    Article  CAS  PubMed  Google Scholar 

  22. Packard, N., J. Crutchfield, J. Farmer, and R. Shaw. Gemomtry from time-series. Phys Rev. Lett. 45:712–716, 1980

    Article  Google Scholar 

  23. Peng, C., J. Mietus, J. Hausdorff, S. Havlin, H. Stanley, and A. Goldberger. Long-range anticorrelations and non-gaussian behavior of the heartbeat. Phys. Rev. Lett. 70:1343–1346, 1993

    Article  Google Scholar 

  24. Peng, C., S. Havlin, H. Stanley, and A. Goldberger. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5:82–87, 1995

    Article  CAS  PubMed  Google Scholar 

  25. Pincus, S., and R. Viscarello. Approximate entropy: a regularity statistic for fetal heart rate analysis. Obst. Gynecol. 79:249–255, 1992

    CAS  Google Scholar 

  26. Poon, C. The chaos about heart rate chaos. J. Cardiovasc. Electrophysiol. 11:235–236, 2000

    Article  CAS  PubMed  Google Scholar 

  27. Poon, C., and C. Merrill. Decrease of cardiac chaos in congestive heart failure. Nature 389:492–495, 1997

    Article  CAS  PubMed  Google Scholar 

  28. Richman, J., and J. Moorman. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278:H2039–H2049, 2000

    CAS  PubMed  Google Scholar 

  29. Sauer, T., J. Yorke, and M. Casdagli. Embedology. J. Stat. Phys. 65:579–616, 1991

    Article  Google Scholar 

  30. Saul, J., P. Albrecht, R. Berger, and R. Cohen. Analysis of long-term heart rate variability: methods, 1/f scaling and implications. Comput. Cardiol. 14:419–422, 1988

    CAS  PubMed  Google Scholar 

  31. Takens, F. Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, Lecture Notes in Mathematics 898, edited by D. A. Rand and L. S. Young, Springer-Verlag, 366 p, 1981

  32. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93:1043–1065, 1996

    Google Scholar 

  33. Wolf, A., J. Swift, H. Swinney, and J. Vastano. Determining lyapunov exponents from a time series. Phys. D 16:285, 1985

    Article  Google Scholar 

  34. Wu, G., N. Arzeno, L. Shen, D. Tang, D. Zheng, N. Zhao, D. Eckberg, and C. Poon. Chaotic signatures of heart beat variability and its power spectrum in health, aging and heart failure. PLoS ONE 4:e4323, 2009

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for reviewers’ many constructive comments, which have improved the paper considerably. This work is partially supported by NSF grants CMMI-0825311 and 0826119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Gao, J., Tung, Ww. et al. Multiscale Analysis of Heart Rate Variability: A Comparison of Different Complexity Measures. Ann Biomed Eng 38, 854–864 (2010). https://doi.org/10.1007/s10439-009-9863-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9863-2

Keywords

Navigation