Skip to main content
Log in

Chaotic solutions in the quadratic integrate-and-fire neuron with adaptation

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

The quadratic integrate-and-fire (QIF) model with adaptation is commonly used as an elementary neuronal model that reproduces the main characteristics of real neurons. In this paper, we introduce a QIF neuron with a nonlinear adaptive current. This model reproduces the neuron-computational features of real neurons and is analytically tractable. It is shown that under a constant current input chaotic firing is possible. In contrast to previous study the neuron is not sinusoidally forced. We show that the spike-triggered adaptation is a key parameter to understand how chaos is generated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aihara K, Matsumoto G, Ikegaya Y (1984) Periodic and non-periodic responses of a periodically forced hodgkin-huxley oscillator. J Theor Biol 109:249–269

    Article  PubMed  CAS  Google Scholar 

  • Berry MJ, Warland DK, Meister M (1997) The structure and precision of retinal spike trains. Proc Natl Acad Sci USA 94:5411–5416

    Article  PubMed  CAS  Google Scholar 

  • Brette R (2008) The cauchy problem for one-dimensional spiking neuron models. Cogn Neurodyn 2:21–27

    Article  PubMed  Google Scholar 

  • Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol 94:3637–3642

    Article  PubMed  Google Scholar 

  • Brette R, Guigon E (2003) Reliability of spike timing is a general property of spiking model neurons. Neural Comput 15:279–308

    Article  PubMed  Google Scholar 

  • Chacron MJ, Pakdaman K, Longtin A (2003) Interspike interval correlations, memory, adaptation, and refractoriness in a leaky integrate-and-fire model with threshold fatigue. Neural Comput 15:253–278

    Article  PubMed  Google Scholar 

  • Chacron MJ, Longtin A, Pakdaman K (2004) Chaotic firing in the sinusoidally forced leaky integrate-and-fire model with threshold fatigue. Physica D 192:138–160

    Article  Google Scholar 

  • Coombes S (1999) Liapunov exponents and mode-locked solutions for integrate-and-fire dynamical systems. Phys Lett A 255(1–2):49–57

    Article  CAS  Google Scholar 

  • de Ruyter van Steveninck RR, Lewen GD, Strong SP, Koberle R, Bialek W (1997) Reproducibility and variability in neural spike trains. Science 275:1805–1808

    Article  Google Scholar 

  • Ermentrout B (1996) Type I membranes, phase resetting curves, and synchrony. Neural Comput 8:979–1001

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout B, Kopell N (1986) Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J Appl Math 46:233–253

    Article  Google Scholar 

  • Ermentrout B, Pascal M, Gutkin B (2001) The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators. Neural Comput 13:1285–1310

    Article  PubMed  CAS  Google Scholar 

  • Gutkin B, Ermentrout B (1998) Dynamics of membrane excitability determine interspike interval variability: A link between spike generation mechanisms and cortical spike train statistics. Neural Comput 10:1047–1065

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Ishizuka S, Ohta M, Hirakawa K (1982) Chaotic behavior in the onchidium giant neuron under sinusoidal forcing. Phys Lett A 88:435–438

    Article  Google Scholar 

  • Izhikevich EM (2000) Neural excitability, spiking, and bursting. Int J Bifurcat Chaos 10:1171–1266

    Article  Google Scholar 

  • Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14:1569–1572

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15:1063–1070

    Article  PubMed  Google Scholar 

  • Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT, Cambridge, USA

    Google Scholar 

  • Li T-Y, Yorke JA (1975) Period three implies chaos. Am Math Mon 82:985–992

    Article  Google Scholar 

  • Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268:1503–1506

    Article  PubMed  CAS  Google Scholar 

  • Marotto FR (1978) Snap-back repellers imply chaos in R n. J Math Anal Appl 63:199–223

    Article  Google Scholar 

  • Marotto FR (2004) On redefining a snap-back repeller. Chaos Solitons Fractals 25:25–28

    Article  Google Scholar 

  • Richardson M, Brunel N, Hakim V (2003) From subthreshold to firing-rate resonance. J Neurophysiol 89:2538–2554

    Article  PubMed  Google Scholar 

  • Tiesinga PHE (2002) Precision and reliability of periodically and quasiperiodically driven integrate-and-fire neurons. Phys Rev E 65:41913

    Article  CAS  Google Scholar 

  • Touboul J (2008) Bifurcation analysis of a general class of non-linear integrate and fire neurons. SIAM Appl Math 4:1045–1079

    Article  Google Scholar 

  • VanRullen R, Guyonneau R, Thorpe SJ (2005) Spike times make sense. Trends Neurosci 28:1–4

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, G., Tonnelier, A. Chaotic solutions in the quadratic integrate-and-fire neuron with adaptation. Cogn Neurodyn 3, 197–204 (2009). https://doi.org/10.1007/s11571-008-9069-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-008-9069-6

Keywords

Navigation