Skip to main content
Log in

Spike-adding and reset-induced canard cycles in adaptive integrate and fire models

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study a class of planar integrate and fire models called adaptive integrate and fire (AIF) models, which possesses an adaptation variable on top of membrane potential, and whose subthreshold dynamics is piecewise linear . These AIF models therefore have two reset conditions, which enable bursting dynamics to emerge for suitable parameter values. Such models can be thought of as hybrid dynamical systems. We consider a particular slow dynamics within AIF models and prove the existence of bursting cycles with N resets, for any integer N. Furthermore, we study the transition between N- and \((N+1)\)-reset cycles upon vanishingly small parameter variations and prove (for \(N=2\)) that such transitions are organised by canard cycles. Finally, using numerical continuation we compute branches of bursting cycles, including canard-explosive branches, in these AIF models, by suitably recasting the periodic problem as a two-point boundary-value problem .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arima, N., Okazaki, H., Nakano, H.: A generation mechanism of canards in a piecewise linear system. IEICE Trans. Fundam. Electron, Commun Computer Sci 80(3), 447–453 (1997)

    Google Scholar 

  2. Avrutin, V., Granados, A., Schanz, M.: Sufficient conditions for a period incrementing big bang bifurcation in one-dimensional maps. Nonlinearity 24(9), 2575 (2011)

    Article  MathSciNet  Google Scholar 

  3. Avrutin, V., Schanz, M.: On multi-parametric bifurcations in a scalar piecewise-linear map. Nonlinearity 19(3), 531 (2006)

    Article  MathSciNet  Google Scholar 

  4. Avrutin, V., Sushko, I.: A gallery of bifurcation scenarios in piecewise smooth maps. In: global analysis of dynamic models in economics and finance, pp. 369–395. Springer, Cham (2013)

    MATH  Google Scholar 

  5. Banerjee, S., Karthik, M., Yuan, G., Yorke, J.A.: Bifurcations in one-dimensional piecewise smooth maps-theory and applications in switching circuits. IEEE Trans. Circuits Syst. I: Fundam. Theor. Appl. 47(3), 389–394 (2000)

    Article  MathSciNet  Google Scholar 

  6. Benoît, E., Callot, J.L., Diener, F., Diener, M.: Chasse au canard. Collectanea. Mathematica 32(1–2), 37–119 (1981)

  7. Bernardo, M., Budd, C., Champneys, A.R., Kowalczyk, P.: Piecewise-smooth dynamical systems: theory and applications, vol. 163. Springer Science & Business Media, Berlin (2008)

  8. Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94(5), 3637–3642 (2005)

    Article  Google Scholar 

  9. Chen, L., Zhou, Y., Yang, F., Zhong, S., Zhang, J.: Complex dynamical behavior in memristor-capacitor systems. Nonlinear Dyn. 98(1), 517–537 (2019)

    Article  Google Scholar 

  10. Coombes, S., Thul, R., Wedgwood, K.C.: Nonsmooth dynamics in spiking neuron models. Phys. D: Nonlinear Phenomena 241(22), 2042–2057 (2012)

    Article  MathSciNet  Google Scholar 

  11. Desroches, M., Fernández-García, S., Krupa, M.: Canards in a minimal piecewise-linear square-wave burster. Chaos: Interdiscip. J. Nonlinear Sci. 26(7), 073111 (2016)

    Article  MathSciNet  Google Scholar 

  12. Desroches, M., Fernández-García, S., Krupa, M., Prohens, R., Teruel, A.E.: Piecewise-linear (pwl) canard dynamics. Nonlinear Syst. 1, 67–86 (2018)

    Google Scholar 

  13. Desroches, M., Guillamon, A., Ponce, E., Prohens, R., Rodrigues, S., Teruel, A.E.: Canards, folded nodes, and mixed-mode oscillations in piecewise-linear slow-fast systems. SIAM Rev. 58(4), 653–691 (2016)

    Article  MathSciNet  Google Scholar 

  14. Desroches, M., Kaper, T.J., Krupa, M.: Mixed-mode bursting oscillations: dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster. Chaos: Interdiscip. J. Nonlinear Sci. 23(4), 046106 (2013)

    Article  MathSciNet  Google Scholar 

  15. Desroches, M., Krupa, M., Rodrigues, S.: Spike-adding in parabolic bursters: the role of folded-saddle canards. Phys. D: Nonlinear Phenomena 331, 58–70 (2016)

    Article  MathSciNet  Google Scholar 

  16. Doedel, E.J., Oldeman, B.E.: (with major contributions from Champneys, A.R., Dercole, F., Fairgrieve, T.F., Kuznetsov, Y.A., Paffenroth, R.C., Sandstede, B., Wang, X.J., Zhang, C.H.): Auto-07p: Continuation and bifurcation software for ordinary differential equations. Department of Computer Science, Concordia University, Montreal, Canada. Available from http://cmvl.cs.concordia.ca/auto/ (2007)

  17. Eckhaus, W.: Relaxation oscillations including a standard chase on french ducks.In asymptotic analysis II, pp. 449–497. Springer, Cham (1983)

    Google Scholar 

  18. Ermentrout, G.B., Kopell, N.: Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Appl. Math. 46(2), 233–253 (1986)

    Article  MathSciNet  Google Scholar 

  19. Furber, S.: Large-scale neuromorphic computing systems. J. Neural Eng. 13(5), 051001 (2016)

    Article  Google Scholar 

  20. Górski, T., Depannemaecker, D., Destexhe, A.: Conductance-based adaptive exponential integrate-and-fire model. Neural Comput. 33(1), 41–66 (2021)

    Article  MathSciNet  Google Scholar 

  21. Hindmarsh, J.L., Rose, R.: A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal society of London. Series B. Biological sciences 221(1222), 87–102 (1984)

  22. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10(06), 1171–1266 (2000)

  23. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)

  24. Karbowski, J., Kopell, N.: Multispikes and synchronization in a large neural network with temporal delays. Neural Comput. 12(7), 1573–1606 (2000)

    Article  Google Scholar 

  25. Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Diff. Equ. 174(2), 312–368 (2001)

    Article  MathSciNet  Google Scholar 

  26. Prohens, R., Teruel, A.E.: Canard trajectories in 3d piecewise linear systems. Discret. Contin. Dyn. Syst.-A 33(10), 4595 (2013)

    Article  MathSciNet  Google Scholar 

  27. Rinzel, J.: A formal classification of bursting mechanisms in excitable systems. In: Gleason, A.M. (Ed.) Proceedings of the International Congress of Mathematicians. vol. II, Berkeley, California, USA, August 3–11, 1986, pp. 1578–1593. American Mathematical Society (1987)

  28. Schenke, B., Avrutin, V., Schanz, M.: On a bifurcation structure mimicking period adding. Proc. Royal Soc. A: Math., Phys. Eng. Sci. 467(2129), 1503–1518 (2011)

  29. Shilnikov, A., Kolomiets, M.: Methods of the qualitative theory for the hindmarsh-rose model: a case study-a tutorial. Int. J. Bif. Chaos 18(08), 2141–2168 (2008)

  30. Terman, D.: Chaotic spikes arising from a model of bursting in excitable membranes. SIAM J. Appl. Math. 51(5), 1418–1450 (1991)

Download references

Acknowledgements

SR was supported by Ikerbasque (The Basque Foundation for Science), by the Basque Government through the BERC 2018-2021 program and by the Ministry of Science, Innovation and Universities: BCAM Severo Ochoa accreditation SEV-2017- 0718 and through project RTI2018-093860B-C21 funded by (AEI/FEDER, UE) with acronym “MathNEURO”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Desroches.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desroches, M., Kowalczyk, P. & Rodrigues, S. Spike-adding and reset-induced canard cycles in adaptive integrate and fire models. Nonlinear Dyn 104, 2451–2470 (2021). https://doi.org/10.1007/s11071-021-06441-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06441-z

Keywords

Navigation