Skip to main content
Log in

On the boundary regularity of suitable weak solutions to the Navier-Stokes equations

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

We consider suitable weak solutions to an incompressible viscous Newtonian fluid governed by the Navier-Stokes equations in the half space \({\mathbb {R}^3_+}\). Our main result is a direct proof of the partial regularity up to the flat boundary based on a new decay estimate, which implies the regularity in the cylinder \({Q_\rho ^+(x_0, t_0)}\) provided

$$\limsup_{R\to 0}\frac {1} {R}\int\limits_{Q_R^+(x_0, t_0)} |{\rm rot}\,\mathbf u|^2 dxdt \,\leq\, \varepsilon _0$$

with ε 0 sufficiently small. In addition, we get a new condition for the local regularity beyond Serrin’s class which involves the L 2-norm of ∇u and the L 3/2-norm of the pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A.: Sobolev Spaces. Academic Press, Boston (1978)

    Google Scholar 

  2. Bae H.-O., Choe H.J.: A regularity criterion for the Navier-Stokes equations. Commun. Partial Differ. Equ. 32(7), 1173–1187 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Batchelor G.K.: An Introduction to Fluid Mechanics. Cambridge University Press, Cambridge (1967)

    Google Scholar 

  4. Brown R.M., Shen Z.: Estimates for the Stokes operator in Lipschitz domains. Indiana Univ. Math. J. 44, 1183–1206 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caffarelli L., Kohn R., Nirenberg M.: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35, 771–831 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Farwig R., Kozono H., Sohr H.: An L q-approach to Stokes and Navier-Stokes equations in general domains. Acta Math. 195, 21–53 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Galdi G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations, vol. I. Linearized Steady Problems. Springer, New York (1994)

    Google Scholar 

  8. Giaquinta M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals Math. Studies, no. 105. Princeton University Press, Princeton, NJ (1983)

    Google Scholar 

  9. Giga Y., Sohr H.: Abstract L p estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Funct. Anal. 102, 72–94 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gustafson S., Kang K., Tsai T.-P.: Interior regularity criteria for suitable weak solutions of the Navier-Stokes equations. Commun. Math. Phys. 273(1), 161–176 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hopf E.: Über die Anfangswertaufgabe für die Hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213 (1950/1951)

    MathSciNet  Google Scholar 

  12. Kang K.: On boundary regularity of the Navier-Stokes equations. Commun. Partial Differ. Equ. 29(7–8), 955–987 (2004)

    Article  MATH  Google Scholar 

  13. Kučera P., Skalák Z.: A note on the generalized energy inequality in the Navier-Stokes equations. Appl. Math. Praha 48(6), 537–545 (2003)

    Article  MATH  Google Scholar 

  14. Ladyzhenskaya O.A., Seregin G.A.: On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations. J. Math. Fluid Mech. 1(4), 356–387 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Leray J.: Sur le mouvements d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–284 (1934)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lin F.H.: A new proof of the Caffarelli-Kohn-Nirenberg theorem. Comm. Pure Appl. Math. 51, 241–257 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Naumann, J., Wolff, M.: Interior integral estimates on weak solutions of nonlinear parabolic systems. Preprint nr. 94-12, Fachber. Mathematik, Humboldt-University, Berlin (1994)

  18. Scheffer V.: Partial regularity of solutions to the Navier-Stokes equations. Pacific J. Math. 66, 535–552 (1976)

    MATH  MathSciNet  Google Scholar 

  19. Scheffer V.: Hausdorff measure and the Navier-Stokes equations. Comm. Math. Phys. 55, 97–102 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  20. Seregin G.A.: Local regularity of suitable weak solutions to the Navier-Stokes equations near the boundary. J. Math. Fluid Mech. 4, 1–29 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Seregin, G.A., Shilkin, T.N., Solonnikov, V.N.: Boundary partial regularity for the Navier-Stokes equations, J. Math. Sci., New York 132(3), 339–358 (2006); Translation from Zap. Nauchn. Semin. POMI 310, 228, 158–190 (2004)

    Google Scholar 

  22. Serrin J.: On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Rational Mech. Anal. 9, 187–195 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  23. Skalák Z.: Regularity of weak solutions of the Navier-stokes equations near the smooth Boundary. Electron. J. Diff. Equ. 45, 1–11 (2005)

    Google Scholar 

  24. Sohr H.: The Navier-Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser, Basel (2001)

    MATH  Google Scholar 

  25. Struwe M.: On partial regularity results for the Navier-Stokes equations. Commun. Pure Appl. Math. 41(4), 437–458 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  26. Takahashi S.: On interior regularity criteria for weak solutions of the Navier-Stokes equations. Manuscripta math. 69, 237–254 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  27. Tian G., Xin Z.: Gradient estimation on Navier-Stokes equations. Commun. Anal. Geom. 7(2), 221–257 (1999)

    MATH  MathSciNet  Google Scholar 

  28. Vasseur A.F.: A new proof of partial regularity of solutions to Navier-Stokes equations. Nonlinear Differ. Equ. Appl. 14(5–6), 753–785 (2008)

    MathSciNet  Google Scholar 

  29. Wolf J.: A direct proof of the Caffarelli-Kohn-Nirenberg theorem. Banach Center Publ., Parabolic and Navier-Stokes equations 81, 533–552 (2008)

    Google Scholar 

  30. Wolf, J.: The Caffarelli-Kohn-Nirenberg theorem—A direct proof by Campanato’s method. Preprint 2006–2004, Necas Center for Math. Model (2006)

  31. Wolf, J.: A new criterion for partial regularity of suitable weak solutions to the Navier-Stokes equations, (to appear) In: Proceedings of the Conference Mathematical Theory of Fluid Mechanics in Honour of G.P. Galdi’s 60th Birthday, Estoril (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Wolf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, J. On the boundary regularity of suitable weak solutions to the Navier-Stokes equations. Ann. Univ. Ferrara 56, 97–139 (2010). https://doi.org/10.1007/s11565-010-0091-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-010-0091-3

Keywords

Mathematics Subject Classification (2000)

Navigation