Skip to main content
Log in

On the effect of external forces on incompressible fluid motions at large distances

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

We study incompressible Navier–Stokes flows in \({\mathbb R^d}\) with small and well localized data and external force f. We establish pointwise estimates for large |x| of the form \({c_t|x|^{-d}\le |u(x,t)|\le c^\prime_t|x|^{-d}}\), where c t > 0 whenever \({\int_0^t\int f(x,s)\,dx\,ds\not= {\bf 0}}\) . This sharply contrasts with the case of the Navier–Stokes equations without force, studied in Brandolese and Vigneron (J Math Pures Appl 88:64–86, 2007) where the spatial asymptotic behavior was \({|u(x,t)|\simeq C_t|x|^{-d-1}}\) . In particular, this shows that external forces with non-zero mean, no matter how small and well localized (say, compactly supported in space-time), increase the velocity of fluid particles at all times t and at at all points x in the far-field. As an application of our analysis on the pointwise behavior, we deduce sharp upper and lower bounds of weighted L p-norms for strong solutions, extending the results obtained in Bae et al. (to appear) for weak solutions, by considering here a larger (and in fact, optimal) class of weight functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrouche C., Girault V., Schonbek M.E., Schonbek T.P.: Pointwise decay of solutions and of higher derivatives to Navier–Stokes equations. SIAM J. Math. Anal. 31(4), 740–753 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bae, H.-O., Brandolese, L., Jin, B.J.: Asymptotic behavior for the Navier–Stokes equations with nonzero external forces. Nonlinear analysis, doi:10.1016/j.na.2008.10.074 (to appear)

  3. Bae H.-O., Jin B.J.: Upper and lower bounds of temporal and spatial decays for the Navier–Stokes equations. J. Diff. Eq 209, 365–391 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bergh J., Löfsrtŏm J.: Interpolation Spaces, an Introduction. Springer, Heidelberg (1976)

    MATH  Google Scholar 

  5. Brandolese L., Vigneron F.: New asymptotic profiles of nonstationnary solutions of the Navier–Stokes system. J. Math. Pures Appl. 88, 64–86 (2007)

    MATH  MathSciNet  Google Scholar 

  6. Brandolese L.: Fine properties of self-similar solutions of the Navier–Stokes equations. Arch. Rational Mech. Anal. 192(3), 375–401 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Choe H.J., Jin B.J.: Weighted estimates of the asymptotic profiles of the Navier–Stokes flow in \({\mathbb R^n}\) . J. Math. Anal. Appl. 344(1), 353–366 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. He C., Xin Z.: On the decay properties of solutions to the nonstationary Navier–Stokes equations in \({\mathbb R^3}\) . Proc. Roy. Edinbourgh Soc. Sect. A. 131(3), 597–619 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kato T.: Strong L p-solutions of the Navier–Stokes equations in \({\mathbb R^m}\) , with applications to weak solutions. Math. Z 187, 471–480 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kukavica I., Torres J.J.: Weighted bounds for velocity and vorticity for the Navier–Stokes equations. Nonlinearity 19, 293–303 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kukavica I., Torres J.J.: Weighted L p decay for solutions of the Navier–Stokes equations. Comm. Part. Diff. Eq. 32, 819–831 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lemarié-Rieusset P.G.: Recent developments in the Navier–Stokes problem. Chapman & Hall, CRC Press, Boca Raton (2002)

    MATH  Google Scholar 

  13. Miyakawa T.: On space time decay properties of nonstationary incompressible Navier–Stokes flows in \({\mathbb R^n}\) . Funkcial. Ekvac. 32(2), 541–557 (2000)

    MathSciNet  Google Scholar 

  14. Oliver M., Titi E.: Remark on the rate of decay of higher order derivatives for solutions to the Navier–Stokes equations in \({\mathbb R^n}\) . J. Funct. Anal. 172, 1–18 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Schonbek M.E.: L 2 decay for weak solutions of the Navier–Stokes equations. Arch. Rat. Mech. Anal. 88, 209–222 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  16. Schonbek M.E.: Lower bounds of rates of decay for solutions to the Navier–Stokes equations. J. Amer. Math. Soc. 4(3), 423–449 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Skalák, Z.: Asymptotic decay of higher-order norms of solutions to the Navier–Stokes equations in \({\mathbb R^3}\) . Preprint (2009), http://mat.fsv.cvut.cz/nales/preprints/

  18. Takahashi S.: A weighted equation approach to decay rate estimates for the Navier–Stokes equations. Nonlinear Anal. 37, 751–789 (1999)

    Article  MathSciNet  Google Scholar 

  19. Zhang Qi S.: Global solutions of the Navier–Stokes equations with large L 2 norms in a new function space. Adv. Diff. Eq. 9(5–6), 587–624 (2004)

    MATH  Google Scholar 

  20. Zhou Y.: A remark on the decay of solutions to the 3-D Navier–Stokes equations. Math. Meth. Appl. Sci. 30, 1223–1229 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Brandolese.

Additional information

This research was supported by EGIDE, through the program Huber-Curien “Star” N. 16560RK.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, HO., Brandolese, L. On the effect of external forces on incompressible fluid motions at large distances. Ann. Univ. Ferrara 55, 225–238 (2009). https://doi.org/10.1007/s11565-009-0079-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-009-0079-z

Keywords

Mathematics Subject Classification (2000)

Navigation