Skip to main content
Log in

Rigorous upscaling of the infinite adsorption rate reactive flow under dominant Peclet number through a pore

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

In this paper we present a rigorous derivation of the effective model for enhanced diffusion through a narrow and long 2D pore. The analysis uses the anisotropic singular perturbation technique. Starting point is a local pore scale model describing the transport by convection and diffusion of a reactive solute. The solute particles undergo an adsorption process at the lateral tube boundary, with high adsorption rate. The transport and reaction parameters are such that we have large, dominant Peclet number with respect to the ratio of characteristic transversal and longitudinal lengths (the small parameter \(\varepsilon\)). We give a formal derivation of the model using the anisotropic multiscale expansion with respect to \(\varepsilon\) . Error estimates for the approximation of the physical solution, by the upscaled one, are presented in the energy norm as well as in L and L 1 norms with respect to the space variable. They give the approximation error as a power of \(\varepsilon\) and guarantee the validity of the upscaled model through the rigorous mathematical justification of the effective behavior for small \(\varepsilon\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aris R. (1956). On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. Sect. A. 235: 67–77

    Article  Google Scholar 

  2. Bourgeat A., Jurak M. and Piatnitski A.L. (2003). Averaging a transport equation with small diffusion and oscillating velocity. Math. Methods Appl. Sci. 26: 95–117

    Article  MATH  MathSciNet  Google Scholar 

  3. Grenier E. and Rousset F. (2001). Stability of one-dimensional boundary layers by using Green’s functions. Commun. Pure Appl. Math. LIV: 1343–1385

    Article  MathSciNet  Google Scholar 

  4. Knabner P., van Duijn C.J., Hengst S. (1995). An analysis of crystal dissolution fronts in flows through porous media. Part 1: compatible boundary conditions. Adv. Water Resour. 18: 171–185

    Article  Google Scholar 

  5. Mercer G.N. and Roberts A.J. (1990). A centre manifold description of contaminant dispersion in channels with varying flow profiles. SIAM J. Appl. Math. 50: 1547–1565

    Article  MATH  MathSciNet  Google Scholar 

  6. Mikelić A., Devigne V., van Duijn C.J. (2006). Rigorous upscaling of the reactive flow through a pore, under dominant Peclet and Damkohler numbers. SIAM J. Math. Anal. 38(4): 1262–1287

    Article  MathSciNet  MATH  Google Scholar 

  7. Oleinik O.A. and Iosif’jan G.A. (1981). On the behavior at infinity of solutions of second order elliptic equations in domains with noncompact boundary. Math. USSR Sbornik 40: 527–548

    Article  Google Scholar 

  8. Paine M.A., Carbonell R.G. and Whitaker S. (1983). Dispersion in pulsed systems—I, heterogeneous reaction and reversible adsorption in capillary tubes. Chem. Eng. Sci. 38: 1781–1793

    Article  Google Scholar 

  9. Pyatniskii A.I. (1984). Averaging singularly perturbed equation with rapidly oscillating coefficients in a layer. Math. USSR Sbornik 49: 19–40

    Article  Google Scholar 

  10. Pyatniskii, A.I.: Personal communication (2005)

  11. Rosencrans S. (1997). Taylor dispersion in curved channels. SIAM J. Appl. Math. 57: 1216–1241

    Article  MATH  MathSciNet  Google Scholar 

  12. Rubinstein J. and Mauri R. (1986). Dispersion and convection in porous media. SIAM J. Appl. Math. 46: 1018–1023

    Article  MATH  MathSciNet  Google Scholar 

  13. Taylor G.I. (1953). Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. A 219: 186–203

    Article  Google Scholar 

  14. van Duijn, C.J., Knabner, P., Schotting, R.J. (1996). An analysis of crystal dissolution fronts in flows through porous media. Part 2: Incompatible boundary conditions. CWI, Amsterdam

    Google Scholar 

  15. Knabner P. and Duijn C.J. (1997). Travelling wave behavior of crystal dissolution in porous media flow. Eur. J. Appl. Math. 8: 49–72

    MATH  Google Scholar 

  16. Pop I.S. and Duijn C.J. (2004). Crystal dissolution and precipitation in porous media: pore scale analysis. J. Reine Angew. Math. 577: 171–211

    MATH  MathSciNet  Google Scholar 

  17. van Duijn, C.J., Mikelić, A., Pop, I.S., Rosier, C.: Effective dispersion equations for reactive flows with dominant Peclet and Damkohler numbers. CASA Report 07-20, TU Eindhoven, The Netherlands (June 2007). Under revision in “Advances in Chemical Engineering”

  18. van Genuchten M.Th., Cleary R.W. (1979). Movement of solutes in soil: computer-simulated and laboratory results. In: Bolt, G.H. (eds) “Soil Chemistry B. Physico-Chemical Models, Chap. 10”. Developements in Soil Sciences 5B, pp 349–386. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andro Mikelić.

Additional information

This article is dedicated to 70th birthday of Professor I. Aganović.

The research of A. Mikelić and C. Rosier was partially supported by the GDR MOMAS (Modélisation Mathématique et Simulations numériques liées aux problèmes de gestion des déchets nucléaires) (PACEN/CNRS, ANDRA, BRGM, CEA, EDF, IRSN) as a part of the project “Changements d’échelle dans la modélisation du transport multiphasique et réactif en milieux poreux : application aux milieux fracturés et aux argiles”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikelić, A., Rosier, C. Rigorous upscaling of the infinite adsorption rate reactive flow under dominant Peclet number through a pore. Ann. Univ. Ferrara 53, 333–359 (2007). https://doi.org/10.1007/s11565-007-0026-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-007-0026-9

Keywords

Mathematics Subject Classification (2000)

Navigation