Skip to main content

Advertisement

Log in

Exploring Potential of Aspergillus sclerotiorum: Secondary Metabolites and Biotechnological Relevance

  • Review
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Fungi have been proven to be an inexhaustible treasure for structural-unique bioactive metabolites. Aspergillus sclerotiorum (Aspergillaceae) is a source of different enzymes that could have potential biotechnological and industrial applications. Also, this fungus has the capacity to biosynthesize different metabolites: pyrazines, cyclic peptides, indole derivatives, diketopiperazines, butenolides, and lovastatin analogs with diversified bioactivities. It is noteworthy that diketopiperazines and butenolides are the most bioactive metabolites that possessed marked antimicrobial and cytotoxic potentials. The current review aims to discuss the metabolites produced by A. sclerotiorum, including their structures, bioactivities, and proposed biosynthesis, as well as the biotechnological applications of this fungus in the period from 1958 to September 2022. A total of 104 metabolites and 91 references have been listed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

A-549:

human lung adenocarcinoma epithelial cell line

ACC-MESO-1:

malignant pleural mesothelioma

Akt:

serine/threonine protein kinase B

AMPK:

AMP-dependent kinase serine

Caco-2:

human colon cancer cell lines

CC:

column chromatography

CCK-8:

cell counting kit-8

CD:

circular dichroism

CFTR:

cystic fibrosis transmembrane conductance regulator

cGMP:

cyclic guanosine monophosphate

ECD:

electronic circular dichroism

GFP:

green fluorescent protein-based fluorescent detection

HeLa:

human cervical epitheloid carcinoma cell line

HepG2:

human hepatocellular liver carcinoma cell line

HL-60:

human promyelocytic leukemia cell line

HL-7702:

human normal liver

HMGR:

hydroxymethylglutaryl-coenzyme A reductase

HONE1:

human nasopharyngeal carcinoma cell lines

HONE-EBV:

human nasopharyngeal carcinoma cell line

HNRPS:

hybrid polyketide- non-ribosomal peptide synthase

Huh-7:

human hepatoma cell line

IC50 :

half-maximal inhibitory concentration

IL-1β:

interleukin-1β

IZD:

inhibition zone diameter

KB:

human oral epidermoid carcinoma cell line

LC50 :

lethal concentration 50

LC-MS:

liquid chromatography mass spectrometry

LDH:

lactate dehydrogenase

LXRα:

liver X receptor alpha

MCF-7:

breast cancer cells

MIC:

minimum inhibitory concentration

MPLC:

medium pressure liquid chromatography

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NAFLD:

non-alcoholic fatty liver disease

NO:

nitric oxide

NOE-DIFF:

nuclear overhauser effect difference spectroscopy

NPC1L1:

Niemann-pick c1-like 1

NRPS:

non-ribosomal peptide synthase

PKS:

polyketide synthase

ODS:

octadecylsilyl

OSMAC:

one strain many compounds

SiO2 CC:

silica gel column

SmF:

submerged fermentation

SMMC-7721:

human hepatoma cell line

SRB:

sulforhodamine B

SSF:

solid-state fermentation

U937:

pro-monocytic, human myeloid leukaemia cell line

Vero:

African green monkey kidney fibroblast cells

WST-8:

water-soluble tetrazolium 8

References

  • Akone SH, Mándi A, Kurtán T, Hartmann R, Lin W, Daletos G, Proksch P (2016) Inducing secondary metabolite production by the endophytic fungus Chaetomium sp. through fungal–bacterial co-culture and epigenetic modification. Tetrahedron 72(41):6340–6347. https://doi.org/10.1016/j.tet.2016.08.022

    Article  CAS  Google Scholar 

  • Alburae NA, Mohammed AE, Alorfi HS, JamanTurki A, Asfour HZ, Alarif WM, Abdel-Lateff A (2020) Nidulantes of Aspergillus f Emericella: A treasure trove of chemical diversity and biological activities. Metabolites 10(2):73. https://doi.org/10.3390/metabo10020073

    Article  CAS  Google Scholar 

  • Anggiani JP, Listiyowati S, Rahayu G (2020) Entomopathogenic fungi Beauveria sp. and Aspergillus sclerotiorum can produce secondary metabolite quinidine. IOP Conf Ser: Earth Environ Sci 457(1):012032. https://doi.org/10.1088/1755-1315/457/1/012032

    Article  Google Scholar 

  • Anwar K, Gohar MS (2014) Otomycosis; clinical features, predisposing factors and treatment implications. Pak J Med Sci 30(3):564–567. https://doi.org/10.12669/pjms.303.4106

    Article  Google Scholar 

  • Arai K, Shimizu S, Yamamoto Y (1981) Metabolic products of aspregillus terreus. VI. metabolites of the strain IFO 8835. (3). the isolation and chemical structures of colorless metabolites. Chem Pharm Bull 29:1005–1012. https://doi.org/10.1248/cpb.29.1005

    Article  CAS  Google Scholar 

  • Bao J, Wang J, Zhang XY, Nong XH, Qi SH (2017) New furanone derivatives and alkaloids from the co-culture of marine-derived fungi Aspergillus sclerotiorum and Penicillium citrinum. Chem Biodivers 14(3):e1600327. https://doi.org/10.1002/cbdv.201600327

    Article  CAS  Google Scholar 

  • Bennett J W (2010) An overview of the genus Aspergillus, In In. Machida M, Gomi K (eds) Aspergillus: molecular biology and genomics, Caister Academic Press 1–17.

  • Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender JL (2014) Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 32(6):1180–1204

    Article  CAS  Google Scholar 

  • Bertrand S, Petit C, Marcourt L, Ho R, Gindro K, Monod M, Wolfender JL (2013) HPLC profiling with at-line microdilution assay for the early identification of antifungal compounds in plants from French Polynesia. Phytochem Anal 25:106–112

    Article  Google Scholar 

  • Bills GF, Gloer JB (2016) Biologically active secondary metabolites from the fungi. Microbiol Spectr 4(6). https://doi.org/10.1128/microbiolspec.FUNK-0009-2016

  • Bok JW, Chiang YM, Szewczyk E, Reyes-Dominguez Y, Davidson AD, Sanchez JF, Lo HC, Watanabe K, Strauss J, Oakley BR, Wang CC, Keller NP (2009) Chromatin-level regulation of biosynthetic gene clusters. Nat Chem Biol 5:462–464

    Article  CAS  Google Scholar 

  • Bonugli-Santos RC, Durrant LR, Da Silva M, Sette LD (2010) Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzym Microb Technol 46:32–37

    Article  CAS  Google Scholar 

  • Boutibonnes P (1980) Antibacterial activity of some mycotoxins. IRCS Med Sci 8:850–851

    CAS  Google Scholar 

  • Cardoso KBB (2019) Assessment of the biotechnological potential of Aspergillus ochraceus URM604 and Aspergillus sclerotiorum URM5792. Thesis in Portuguese.

    Google Scholar 

  • Cichewicz RH (2010) Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat Prod Rep 27:11–22

    Article  CAS  Google Scholar 

  • D’Souza DT, Tiwari R, Ak S, Raghukumara C (2006) Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzym Microb Technol 38:504–511

    Article  Google Scholar 

  • De Roy K, Marzorati M, Van den Abbeele P, Van de Wiele T, Boon N (2014) Synthetic microbial ecosystems: an exciting tool to understand and apply microbial communities. Environ Microbiol 16(6):1472–1481

    Article  Google Scholar 

  • Deshmukh SK, Agrawala S, Gupta MK, Patidar RK, Ranjan N (2022a) Fungi: A novel source of anti-viral compounds. Curr Pharm Biotechnol 23(4):495537

    Article  CAS  Google Scholar 

  • Deshmukh SK, Dufossé L, Chhipa H, Saxena S, Mahajan GB, Gupta MK (2022b) Fungal endophytes: a potential source of antibacterial compounds. J Fungi 8(2):164. https://doi.org/10.3390/jof8020164

    Article  CAS  Google Scholar 

  • Duangjai A, Rukachaisirikul V, Sukpondma Y, Srimaroeng C, Muanprasat C (2021) Antispasmodic effect of asperidine b, a pyrrolidine derivative, through inhibition of L-Type Ca2+ channel in rat ileal smooth muscle. Molecules 26:5492. https://doi.org/10.3390/molecules26185492

    Article  CAS  Google Scholar 

  • El-Naggar NEA, Metwally E, El-Tanash A, Sherief A (2016) Statistical optimization of culture conditions and overproduction of inulinase using low cost, renewable feedstocks by a newly isolated Aspergillus sclerotiorum under solid-state fermentation conditions: inulin hydrolysis by partially purified inulinase. J Pure Appl Microbiol 10:991–1014

    Google Scholar 

  • Ertan F, Yagar H, Balkan B (2007) Optimization of alpha-amylase immobilization in calcium alginate beads. Prep Biochem Biotechnol 37:195–204

    Article  CAS  Google Scholar 

  • Fisch KM, Gillaspy AF, Gipson M, Henrikson JC, Hoover AR, Jackson L, Najar FZ, Wägele H, Cichewicz RH (2009) Chemical induction of silent biosynthetic pathway transcription in Aspergillus niger. J Ind Microbiol Biotechnol 36(9):1199–1213

    Article  CAS  Google Scholar 

  • Goss RJM, Shankar S, Fayad AA (2012) The generation of “unNatural” products: synthetic biology meets synthetic chemistry. Nat Prod Rep 29:870–889

    Article  CAS  Google Scholar 

  • Guo X, Meng Q, Liu J, Wu J, Jia H, Liu D, Gu Y, Liu J, Huang J, Fan A, Lin W (2022) Sclerotiamides C-H, notoamides from a marine gorgonian-derived fungus with cytotoxic activities. J Nat Prod 85(4):1067–1078

    Article  CAS  Google Scholar 

  • Guruceaga X, Perez-Cuesta U, Abad-Diaz de Cerio A, Gonzalez O, Alonso RM, Hernando FL, Ramirez-Garcia A, Rementeria A (2019) Fumagillin, a mycotoxin of Aspergillus fumigatus: biosynthesis, biological activities, detection, and applications. Toxins 12(1):7. https://doi.org/10.3390/toxins12010007

    Article  CAS  Google Scholar 

  • Hansen GM, Laird TS, Woertz E, Ojala D, Glanzer D, Ring K, Richart SM (2016) Aspergillus sclerotiorum fungus is lethal to both Western drywood (Incisitermes minor) and Western subterranean (Reticulitermes hesperus) termites. Fine Focus 2(1):23–38

    Article  Google Scholar 

  • Harima N, Inoue T, Kubota T, Okada O, Ansai SI, Manabe M, Ichinoe M, Kasai T (2004) A case of otomycosis caused by Aspergillus sclerotiorum. J Dermatol 31(11):949–950

    Article  Google Scholar 

  • Ibrahim SRM, Mohamed GA, Khedr AIM (2017) γ-Butyrolactones from Aspergillus species: structures, biosynthesis, and biological activities. Nat Prod Commun 12:791–800

    Google Scholar 

  • Ibrahim S, Choudhry H, Asseri AH, Elfaky MA, Mohamed SGA, Mohamed GA (2022a) Stachybotrys chartarum-A hidden treasure: secondary metabolites, bioactivities, and biotechnological relevance. J Fungi 8(5):504. https://doi.org/10.3390/jof8050504

    Article  CAS  Google Scholar 

  • Ibrahim S, Fadil SA, Fadil HA, Eshmawi BA, Mohamed S, Mohamed GA (2022b) Fungal naphthalenones; Promising metabolites for drug discovery: structures, biosynthesis, sources, and pharmacological potential. Toxins 14:154. https://doi.org/10.3390/toxins14020154

    Article  CAS  Google Scholar 

  • Ibrahim SRM, Bagalagel AA, Diri RM, Noor AO, Bakhsh HT, Muhammad YA, Mohamed GA, Omar AM (2022c) Exploring the activity of fungal phenalenone derivatives as potential ck2 inhibitors using computational methods. J Fungi 8:443. https://doi.org/10.3390/jof8050443

    Article  CAS  Google Scholar 

  • Ibrahim S, Mohamed GA, Al Haidari RA, El-Kholy AA, Zayed MF, Khayat MT (2018) Biologically active fungal depsidones: chemistry, biosynthesis, structural characterization, and bioactivities. Fitoterapia 129:317–365

    Article  CAS  Google Scholar 

  • Ibrahim S, Sirwi A, Eid BG, Mohamed S, Mohamed GA (2021a) Fungal depsides-naturally inspiring molecules: biosynthesis, structural characterization, and biological activities. Metabolites 11:683. https://doi.org/10.3390/metabo11100683

    Article  CAS  Google Scholar 

  • Ibrahim S, Altyar AE, Mohamed S, Mohamed GA (2021b) Genus Thielavia: phytochemicals, industrial importance and biological relevance. Nat Prod Res 36(19):5108–5123

    Article  Google Scholar 

  • Ibrahim SRM, Mohamed SGA, Sindi IA, Mohamed GA (2021c) Biologically active secondary metabolites and biotechnological applications of species of the family Chaetomiaceae (Sordariales): An updated review from 2016 to 2021. Mycol Prog 20(5):595–639

  • Ibrahim S, Sirwi A, Eid BG, Mohamed S, Mohamed GA (2021d) Bright side of Fusarium oxysporum: secondary metabolites bioactivities and industrial relevance in biotechnology and nanotechnology. J Fungi 7(11):943. https://doi.org/10.3390/jof7110943

    Article  CAS  Google Scholar 

  • Iewkittayakorn J, Kuechoo K, Sukpondma Y, Rukachaisirikul V, Phongpaichit S, Chotigeat W (2020) Lovastatin production by Aspergillus sclerotiorum using agricultural waste. Food Technol Biotechnol 58:230–236

    Article  CAS  Google Scholar 

  • Kaewmalee J, Ontawong A, Duangjai A, Tansakul C, Rukachaisirikul V, Muanprasat C, Srimaroeng C (2021) High-efficacy α,β-dehydromonacolin S improves hepatic steatosis and suppresses gluconeogenesis pathway in high-fat diet-induced obese rats. Pharmaceuticals 14:375. https://doi.org/10.3390/ph14040375

    Article  CAS  Google Scholar 

  • Kang SW, Park CH, Hong SI, Kim SW (2007) Production of penicillic acid by Aspergillus sclerotiorum CGF. Bioresour Technol 98:191–197

    Article  CAS  Google Scholar 

  • Kang SW, Kim SW (2004) New antifungal activity of penicillic acid against Phytophthora species. Biotechnol Lett 26:695–698

    Article  CAS  Google Scholar 

  • Klarić MŠ, Despot DJ, Kopjar N, Rašić D, Kocsubé S, Varga J, Peraica M (2015) Cytotoxic and genotoxic potencies of single and combined spore extracts of airborne OTA-producing and OTA-non-producing Aspergilli in Human lung A549 cells. Ecotoxicol Environ Saf 120:206–214

    Article  Google Scholar 

  • König CC, Scherlach K, Schroeckh V, Horn F, Nietzsche S, Brakhage AA, Hertweck C (2013) Bacterium induces cryptic meroterpenoid pathway in the pathogenic fungus Aspergillus fumigatus. Chembiochem 14:938–942

    Article  Google Scholar 

  • Liu S, Dai H, Heering C, Janiak C, Lin W, Liu Z, Proksch P (2017) Inducing new secondary metabolites through co-cultivation of the fungus Pestalotiopsis sp. with the bacterium Bacillus subtilis. Tetrahedron Lett 58:257–261

    Article  CAS  Google Scholar 

  • Long J, Chen Y, Chen W, Wang J, Zhou X, Yang B, Liu Y (2021) Cyclic peptides from the soft coral-derived fungus Aspergillus sclerotiorum SCSIO 41031. Mar Drugs 19:701. https://doi.org/10.3390/md19120701

    Article  CAS  Google Scholar 

  • Ma LY, Zhang HB, Kang HH, Zhong MJ, Liu DS, Ren H, Liu WZ (2019) New butenolides and cyclopentenones from saline soil-derived fungus Aspergillus sclerotiorum. Molecules 24:2642. https://doi.org/10.3390/molecules24142642

    Article  CAS  Google Scholar 

  • Madhyastha MS, Marquardt RR, Masi A, Borsa J, Frohlich AA (1994) Comparison of toxicity of different mycotoxins to several species of bacteria and yeasts: use of Bacillus brevis in a disc division assay. J Food Prot 57:48–53

    Article  CAS  Google Scholar 

  • Marmann A, Aly A, Lin W, Wang B, Proksch P (2014) Co-cultivation – a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar Drugs 12:1043–1065

    Article  Google Scholar 

  • Meena S, Chotigeat W, Sukpondma Y, Phongpaichit S, Rukachaisirikul V, Wonglapsuwan, M (2019) Random mutagenesis of Aspergillus sclerotiorum PSU-RSPG 178 for improvement a lovastatin production. ICoFAB Proceedings 94-98. 10.14457/MSU.res.2019.18

  • Meng Q, Guo X, Wu J, Liu D, Gu Y, Huang J, Fan A, Lin W (2022) Prenylated notoamide-type alkaloids isolated from the fungus Aspergillus sclerotiorum and their inhibition of NLRP3 inflammasome activation and antibacterial activities. Phytochemistry 203:113424. https://doi.org/10.1016/j.phytochem.2022.113424

    Article  CAS  Google Scholar 

  • Meyer V, Nai C (2018) From axenic to mixed cultures: Technological advances accelerating a paradigm shift in microbiology. Trends Microbiol 26:538–554

  • Micetich RG, MacDonald JC (1964) 287. Metabolites of Aspergillus sclerotiorum Huber. J Chem Soc (Resumed) 0:1507-1510

  • Miertusova S, Simaljakova M (2003) Yeasts and fungi isolated at the mycology laboratory of the First Dermatovenerology Clinic of the Medical Faculty Hospital of Comenius University in Bratislava 1995-2000. Epidemiologie, mikrobiologie, imunologie: casopis Spolecnosti pro epidemiologii a mikrobiologii Ceske lekarske spolecnosti JE Purkyne 52(2):76–80

    CAS  Google Scholar 

  • Mohamed GA, Ibrahim S (2021) Untapped potential of marine-associated Cladosporium species: An overview on secondary metabolites, biotechnological relevance, and biological activities. Mar drugs 19(11):645. https://doi.org/10.3390/md19110645

    Article  CAS  Google Scholar 

  • Motohashi K, Inaba S, Takagi M, Shin-ya K (2009) JBIR-15, a new aspochracin derivative, isolated from a sponge-derived fungus, Aspergillus sclerotiorum Huber Sp080903f04. Biosci Biotechnol Biochem 73:1898–1900

    Article  CAS  Google Scholar 

  • Naeem M, Manzoor S, Abid MUH, Tareen MBK, Asad M, Mushtaq S, Ehsan N, Amna D, Xu B, Hazafa A (2022) Fungal proteases as emerging biocatalysts to meet the current challenges and recent developments in biomedical therapies: an updated review. J Fungi 8:109. https://doi.org/10.3390/jof8020109

    Article  CAS  Google Scholar 

  • Neilands JB (1967) Hydroxamic acids in nature: sophisticated ligands play a role in iron metabolism and possibly in other processes in microorganisms. Science 156(3781):1443–1447

    Article  CAS  Google Scholar 

  • Noor AO, Almasri DM, Bagalagel AA, Abdallah HM, Mohamed S, Mohamed GA, Ibrahim S (2020) Naturally occurring isocoumarins derivatives from endophytic fungi: sources, isolation, structural characterization, biosynthesis, and biological activities. Molecules 25(2):395. https://doi.org/10.3390/molecules25020395

    Article  CAS  Google Scholar 

  • Ochi K, Hosaka T (2012) New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol 97:87–98

    Article  Google Scholar 

  • Omar AM, Mohamed GA, Ibrahim SRM (2022) Chaetomugilins and chaetoviridins-promising natural metabolites: structures, separation, characterization, biosynthesis, bioactivities, molecular docking, and molecular dynamics. J Fungi 8(2):127. https://doi.org/10.3390/jof8020127

    Article  CAS  Google Scholar 

  • Ontawong A, Duangjai A, Sukpondma Y, Tadpetch K, Muanprasat C, Rukachaisirikul V, Inchai J, Vaddhanaphuti CS (2022) Cholesterol-lowering effects ofasperidine b, a pyrrolidine derivative from the soil-derived fungus Aspergillus sclerotiorum PSU-RSPG178: a potential cholesterol absorption inhibitor. Pharmaceuticals 15:955. https://doi.org/10.3390/ph15080955

    Article  CAS  Google Scholar 

  • Passarini MR, Rodrigues MV, da Silva M, Sette LD (2011) Marine-derived filamentous fungi and their potential application for polycyclic aromatic hydrocarbon bioremediation. Mar Pollut Bull 62:364–370

    Article  CAS  Google Scholar 

  • Phainuphong P, Rukachaisirikul V, Saithong S, Phongpaichit S, Bowornwiriyapan K, Muanprasat C, Srimaroeng C, Duangjai A, Sakayaroj J (2016) Lovastatin analogues from the soil-derived fungus Aspergillus sclerotiorum PSU-RSPG178. J Nat Prod 79:1500–1507

    Article  CAS  Google Scholar 

  • Phainuphong P, Rukachaisirikul V, Saithong S, Phongpaichit S, Sakayaroj J, Srimaroeng C, Ontawong A, Duangjai A, Muangnil P, Muanprasat C (2018) Asperidines A-C, pyrrolidine and piperidine derivatives from the soil-derived fungus Aspergillus sclerotiorum PSU-RSPG178. Bioorg Med Chem 26(15):4502–4508

    Article  CAS  Google Scholar 

  • Phainuphong P, Rukachaisirikul V, Tadpetch K, Sukpondma Y, Saithong S, Phongpaichit S, Preedanon S, Sakayaroj J (2017) γ-Butenolide and furanone derivatives from the soil-derived fungus Aspergillus sclerotiorum PSU-RSPG178. Phytochemistry 137:165–173

    Article  CAS  Google Scholar 

  • Rocha LC, Luiz RF, Rosset IG, Raminelli C, Seleghim MH, Sette LD, Porto AL (2012c) Bioconversion of iodoacetophenones by marine fungi. Mar Biotechnol 14(4):396–401

    Article  CAS  Google Scholar 

  • Rocha LC, de Souza AL, Rodrigues Filho UP, Campana Filho SP, Sette LD, Porto ALM (2012a) Immobilization of marine fungi on silica gel, silica xerogel and chitosan for biocatalytic reduction of ketones. J Mol Catal B Enzym 84:60–165

    Article  Google Scholar 

  • Rocha LC, Seleghim MH, Comasseto JV, Sette LD, Porto AL (2015) Stereoselective bioreduction of α-azido ketones by whole cells of marine-derived fungi. Mar Biotechnol 17(6):736–742

    Article  CAS  Google Scholar 

  • Rocha LC, Ferreira HV, Luiz RF, Sette LD, Porto AL (2012b) Stereoselective bioreduction of 1-(4-methoxyphenyl)ethanone by whole cells of marine-derived fungi. Mar Biotechnol 14:358–362

    Article  CAS  Google Scholar 

  • Saxena S, Chhibber M, Singh IP (2019) Fungal bioactive compounds in pharmaceutical research and development. Curr Bioact Compd 15:211–231

    Article  CAS  Google Scholar 

  • Šegvić Klarić M, Jakšić Despot D, Kopjar N, Rašić D, Kocsubé S, Varga J, Peraica M (2015) Cytotoxic and genotoxic potencies of single and combined spore extracts of airborne OTA-producing and OTA-non-producing Aspergilli in Human lung A549 cells. Ecotoxicol Environ Saf 120:206–214

    Article  Google Scholar 

  • Seraman S, Rajendran A, Thangavelu V (2010) Statistical optimization of anticholesterolemic drug lovastatin production by the red mold Monascus purpureus. Food Bioprod Process 88:266–276

    Article  CAS  Google Scholar 

  • Shi Y, Ma Y, Wei J, Ge Y, Jiang W, He S, Wu X, Zhang X, Wu B (2021) Comparative metabolomics reveals fungal conversion of co-existing bacterial metabolites within a synthetic Aspergillus-Streptomyces community. Mar Drugs 19:526. https://doi.org/10.3390/md19090526

    Article  CAS  Google Scholar 

  • Singh SM, Barde AK (1983) A case of onychomycosis caused by Aspergillus sclerotiorum. Indian J Dermatol Venereol Leprol 49(1):22–25

    CAS  Google Scholar 

  • Souza PM, Magalhães PD (2010) Application of microbial α-amylase in industry-a review. Braz J Microbiol 41:850–861

    Article  Google Scholar 

  • Suwannarat S, Iewkittayakorn J, Sukpondma Y, Rukachaisirikul V, Phongpaichit S, Chotigeat W (2019) Optimization of the production of lovastatin from Aspergillus sclerotiorum PSURSPG178 under static liquid culture using response surface methodology. Sains Malaysiana 48(1):93–102

    Article  Google Scholar 

  • Szewczyk E, Chiang YM, Oakley CE, Davidson AD, Wang CCC, Oakley BR (2008) Identification and characterization of the asperthecin gene cluster of Aspergillus nidulans. Appl Environ Microbiol 74:7607–7612

    Article  CAS  Google Scholar 

  • Varga J, Kevei E, Rinyu E, Téren J, Kozakiewicz Z (1996) Ochratoxin production by Aspergillus species. Appl Environ Microbiol 62(12):4461–4464

    Article  CAS  Google Scholar 

  • Visagie CM, Varga J, Houbraken J, Meijer M, Kocsub ÚS, Yilmaz N, Fotedar R, Seifert KA, Frisvad JC, Samson RA (2014) Ochratoxin production and taxonomy of the yellow aspergilli (Aspergillus section Circumdati). Stud Mycol 78:1–61. https://doi.org/10.1016/j.simyco.2014.07.001

    Article  CAS  Google Scholar 

  • Wang CY, Liu XH, Zheng YY, Ning XY, Zhang YH, Fu XM, Li X, Shao CL, Wang CY (2022) 2,5-Diketopiperazines from a sponge-derived fungus Aspergillus sclerotiorum. Front Microbiol 13:808532. https://doi.org/10.3389/fmicb.2022.808532

    Article  Google Scholar 

  • Wang H, Zheng JK, Qu HJ, Liu PP, Wang Y, Zhu WM (2011) A new cytotoxic indole-3-ethenamide from the halotolerant fungus Aspergillus sclerotiorum PT06-1. J Antibiot 64(10):679–681

    Article  CAS  Google Scholar 

  • Wang YT, Xue YR, Liu CH (2015) A brief review of bioactive metabolites derived from deep-sea fungi. Mar Drugs 13:4594–4616. https://doi.org/10.3390/md13084594

    Article  CAS  Google Scholar 

  • Weiss U, Strelitz F, Flon H, Asheshov IN (1958) Antibiotic compounds with action against bacterial viruses: Neohydroxyaspergillic acid. Arch Biochem Biophys 74(1):150–157

    Article  CAS  Google Scholar 

  • Whyte AC, Gloer JB, Wicklow DT, Dowdw PF (1996) Sclerotiamide: a new member of the paraherquamide class with potent antiinsectan activity from the sclerotia of Aspergillus sclerotiorum. J Nat Prod 59:1093–1095

    Article  CAS  Google Scholar 

  • Whyte AC, Joshi BK, Gloer JB, Wicklow DT, Dowd PF (2000) New cyclic peptide and bisindolyl benzenoid metabolites from the sclerotia of Aspergillus sclerotiorum. J Nat Prod 63:1006–1009

    Article  CAS  Google Scholar 

  • Winter JM, Behnken S, Hertweck C (2011) Genomics-inspired discovery of natural products. Curr Opin Chem Biol 15:22–31

    Article  CAS  Google Scholar 

  • Xu K, Yuan XL, Li C, Li AX (2020) Recent discovery of heterocyclic alkaloids from marine-derived Aspergillus species. Mar Drugs 18(1):54. https://doi.org/10.3390/md18010054

    Article  CAS  Google Scholar 

  • Yagar H, Ertan F, Balkan B (2008) Comparison of some properties of free and immobilized alpha-amylase by Aspergillus sclerotiorum in calcium alginate gel beads. Prep Biochem Biotechnol 38:13–23

    Article  CAS  Google Scholar 

  • Zang S, Li P, Li W, Zhang D, Hamilton A (2007) Degradation mechanisms of benzo[a]pyrene and its accumulated metabolites by biodegradation combined with chemical oxidation. Chemosphere 67:1368–1374

    Article  CAS  Google Scholar 

  • Zheng J, Xu Z, Wang Y, Hong K, Liu P, Zhu W (2010) Cyclic tripeptides from the halotolerant fungus Aspergillus sclerotiorum PT06-1. J Nat Prod 73(6):1133–1137

    Article  CAS  Google Scholar 

  • Zheng J, Zhu H, Hong K, Wang Y, Liu P, Wang X, Peng X, Zhu W (2009) Novel cyclic hexapeptides from marine-derived fungus, Aspergillus sclerotiorum PT06-1. Org Lett 11:5262–5265

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: (S.R.M.I, S.K.D.), literature search and compilation: (H.M.A., G.A.M.); writing abstract, introduction, conclusion, proof reading: (S.R.M.I., H.M.A., G.A.M., S.K.D.). Preparation of data tables: (S.R.M.I, G.A.M., S.K.D.). Generating structures: H.M.A., G.A.M. Overall compilation and coordination: (S.R.M.I, S.K.D.). All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sunil K. Deshmukh.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Section Editor: Ji-Kai Liu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, S.R.M., Abdallah, H.M., Mohamed, G.A. et al. Exploring Potential of Aspergillus sclerotiorum: Secondary Metabolites and Biotechnological Relevance. Mycol Progress 22, 8 (2023). https://doi.org/10.1007/s11557-022-01856-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11557-022-01856-3

Keywords

Navigation