Skip to main content
Log in

Natonodosa speciosa gen. et sp. nov. and rediscovery of Poroisariopsis inornata: neotropical anamorphic fungi in Xylariales

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Natonodosa is introduced as new genus based on morphology and multigene phylogenetic data, and the monotypic genus Natonodosa, typified by N. speciosa, is characterized by mononematous conidiophores, polyblastic, nodose conidiogenous cells and unicellular, fusiform, hyaline conidia. The other freshly collected material was identified as Poroisariopsis inornata, a species that since its original description had not been reported; it is characterized by synnematous conidiophores with polytretic, cylindrical and uncinate conidiogenous cells with percurrent extensions, and distoseptate, obclavate, brown conidia. A lectotype and an epitype for the species are established and referred since the original specimen of this microfungus has not been found in any herbarium. Placement of both taxa in Xylariales was ascertained by BLASTn searches. Maximum likelihood analysis of the combined sequence data of the ribosomal rDNA (ITS and partial LSU region), as well as partial gene regions coding for the second largest subunit of RNA polymerase II (RPB2) and beta-tubulin (TUB2), was performed. In addition, a new name, Guarroa, is proposed for replacing the illegitimate genus name Phaeobotrys M. Calduch, Gené & Guarro. A dichotomous key to the new genus and morphologically similar taxa is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acero FJ, González V, Sánchez-Ballesteros J, Rubio V, Checa J, Bills GF, Salazar O, Platas G, Peláez F (2004) Molecular phylogenetic studies on the Diatrypaceae based on rDNA-ITS sequences. Mycologia 96:249–259. https://doi.org/10.1080/15572536.2005.11832975

    Article  CAS  PubMed  Google Scholar 

  • Arzanlou M, Groenewald J, Gams W, Braun U, Shin HD, Crous PW (2007) Phylogenetic and morphotaxonomic revision of Ramichloridium and allied genera. Stud Mycol 58:57–93. https://doi.org/10.3114/sim.2007.58.03

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asgari B, Zare R (2011) A contribution to the taxonomy of the genus Coniocessia (Xylariales). Mycol Prog 10:189–206. https://doi.org/10.1007/s11557-010-0688-z

    Article  Google Scholar 

  • Bailey JC, Bidigare RR, Christensen SJ, Andersen RA (1998) Phaeothamniophyceae classis nova: a new lineage of chromophytes based upon photosynthetic pigments, rbcL sequence analysis and ultrastructure. Protist 149(3):245–263

    Article  Google Scholar 

  • Bonthond G, Sandoval-Denis M, Groenewald JZ, Crous PW (2018) Seiridium (Sporocadaceae): an important genus of plant pathogenic fungi. Persoonia 40:96–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calduch M, Gené J, Guarro J, Mercado-Sierra A, Castañeda-Ruíz RF (2002) Hyphomycetes from Nigerian rain forests. Mycologia 94:127–135. https://doi.org/10.1080/15572536.2003.11833255

    Article  PubMed  Google Scholar 

  • Cantillo-Pérez T, Mena-Portales J, Gusmão LFP (2017) Mycelephas levisporus sp. nov. on submerged wood from a freshwater habitat in Brazil. Mycotaxon 132:5–8

    Article  Google Scholar 

  • Castañeda-Ruíz RF, Heredia G, Gusmão LFP, Li DW (2016) Fungal diversity of Central and South America. In: Li DW (ed) Biology of Microfungi. Fungal Biology. Springer, Cham, pp 197–217. https://doi.org/10.1007/978-3-319-29137-6_9

    Chapter  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  PubMed  Google Scholar 

  • Crous PW, Groenewald JZ (2013) A phylogenetic re-evaluation of Arthrinium. IMA Fungus 4:133–154

    Article  PubMed  PubMed Central  Google Scholar 

  • Crous PW, Braun U, Wingfield MJ, Wood AR, Shin HD, Summerell BA, Alfenas AC, Cumagun CJR, Groenewald JZ (2009) Phylogeny and taxonomy of obscure genera of microfungi. Persoonia 22:139–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crous PW, Groenewald JZ, Ryan PG, Wingfield MJ (2012) Fungal planet 147:186–187. http://www.fungalplanet.org/content/pdf-files/FungalPlanet147

  • Crous PW, Groenewald JZ, Wingfield MJ, Le Roux JL (2013) Fungal planet 500:288–289

  • Crous PW, Giraldo A, Hawksworth DL, Robert V, Kirk PM, Guarro J, Robbertse B, Schoch CL, Damm U, Trakunyingcharoen T, Groenewald JZ (2014a) The genera of fungi: fixing the application of type species of generic names. IMA Fungus 5(1):141–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Crous PW, Groenewald JZ, Summerell BA (2014b) Fungal Planet 231:210–211

    Google Scholar 

  • Crous PW, Groenewald JZ, Summerell BA (2014c) Fungal planet 229 & 230:208–209

  • Crous PW, Carris LM, Giraldo A, Groenewald JZ, Hawksworth DL (2015a) The genera of fungi - fixing the application of the type species of generic names - G 2: Allantophomopsis, Latorua, Macrodiplodiopsis, Macrohilum, Milospium, Protostegia, Pyricularia, Robillarda, Rotula, Septoriella, Torula, and Wojnowicia. IMA Fungus 6(1):163–198

    Article  PubMed  PubMed Central  Google Scholar 

  • Crous PW, Wingfield MJ, Guarro J et al (2015b) Fungal planet description sheets: 320–370. Persoonia 34:167–266

  • Crous PW, Wingfield MJ, Burgess TI et al (2016) Fungal planet description sheets: 469–557. Persoonia 37:218–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai DQ, Bahkali AH, Li QR, Bhat DJ, Wijayawardene NN, Li WJ, Chukeatirote E, Zhao RL, Xu JC, Hyde KD (2014) Vamsapriya (Xylariaceae) re-described, with two new species and molecular sequence data. Cryptogam Mycol 35:339–357. https://doi.org/10.7872/crym.v35.iss4.2014.339

    Article  Google Scholar 

  • Daranagama DA, Camporesi E, Tian Q, Liu X, Chamyuang S, Stadler M, Hyde KD (2015) Anthostomella is polyphyletic comprising several genera in Xylariaceae. Fungal Divers 73:203–238

    Article  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decock C, Castañeda-Ruíz RF, Adhikari MK (2004) Taxonomy and phylogeny of Brachyconidiellopsis fimicola, gen. et sp. nov., a sporodochial to synnematous coprophilous fungi related to the Microascales (Ascomycetes) from Nepal. Cryptogam Mycol 25:137–147

    Google Scholar 

  • Deighton F (1990) Observations on Phaeoisariopsis. Mycol Res 94:1096–1102. https://doi.org/10.1016/S0953-7562(09)81340-3

    Article  Google Scholar 

  • Ettl H (1966) Phaeobotrys solitaria, eine neue coccale Chrysophyceae. Revue Algologique, Nouvelle Serie 8:211–214

    Google Scholar 

  • Fiuza PO, Silva CR, Santos TAB, Raja H, Castañeda-Ruíz RF, Gusmão LFP (2018) Roselymyces, a new asexual genus of the Xylariales (Ascomycota) from Brazil. Sydowia 70:59–65. https://doi.org/10.12905/0380.sydowia70-2018-0059

    Article  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Gusmão LFP, Santana-Monteiro J, Castañeda-Ruíz RF (2017) Tretoheliocephala compacta gen. & sp. nov. from the Brazilian semi-arid region. Mycotaxon 132:453–458

    Article  Google Scholar 

  • Hansen HN, Thomas T, Thomas HE (1937) The connection between Dematophora necatrix and Rosellinia necatrix. Hilgardia 10:561–565

    Article  Google Scholar 

  • Helaly SE, Thongbai B, Stadler M (2018) Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the ascomycete order Xylariales. Nat Prod Rep 35:992–1014

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Restrepo M, Groenewald J, Crous PW (2016) Taxonomic and phylogenetic re-evaluation of Microdochium, Monographella and Idriella. Persoonia 36:57–82. https://doi.org/10.3767/003158516X688676

    Article  PubMed  Google Scholar 

  • Hernández-Restrepo M, Gené J, Castañeda-Ruíz RF, Mena-Portales J, Crous PW, Guarro J (2017) Phylogeny of saprobic microfungi from Southern Europe. Stud Mycol 86:53–97. https://doi.org/10.1016/j.simyco.2017.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Hongsanan S, Xie N, Liu JK, Dissanayake A, Ekanayaka AH, Raspé O, Jayawardena RS, Hyde KD, Jeewon R, Purahong W, Stadler M, Peršoh D (2018) Can we use environmental DNA as holotypes? Fungal Divers 92:1–30

    Article  Google Scholar 

  • Hsieh HM, Ju YM, Rogers JD (2005) Molecular phylogeny of Hypoxylon and closely related genera. Mycologia 97:914–923

    Article  CAS  PubMed  Google Scholar 

  • Hsieh HM, Lin CR, Fang MJ, Rogers JD, Fournier J, Lechat C, Ju YM (2010) Phylogenetic status of Xylaria subgenus Pseudoxylaria among taxa of the subfamily Xylarioideae (Xylariaceae) and phylogeny of the taxa involved in the subfamily. Mol Phylogenet Evol 54:957–969

    Article  CAS  PubMed  Google Scholar 

  • Jaklitsch WM, Fournier J, Rogers JD, Voglmayr H (2014) Phylogenetic and taxonomic revision of Lopadostoma. Persoonia 32:52–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaklitsch WM, Gardiennet A, Voglmayr H (2016) Resolution of morphology-based taxonomic delusions: Acrocordiella, Basiseptospora, Blogiascospora, Clypeosphaeria, Hymenopleella, Lepteutypa, Pseudapiospora, Requienella, Seiridium and Strickeria. Persoonia 37:82–105. https://doi.org/10.3767/003158516X690475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeewon R, Liew EC, Hyde KD (2002) Phylogenetic relationships of Pestalotiopsis and allied genera inferred from ribosomal DNA sequences and morphological characters. Mol Phylogenet Evol 25:378–392. https://doi.org/10.1016/S1055-7903(02)00422-0

    Article  CAS  PubMed  Google Scholar 

  • Jong SC, Morris EF (1968) Studies on the synnematuos fungi imperfecti—III Phaeoisariopsis. Mycopathologia Mycol Appl 34:263–272. https://doi.org/10.1007/BF02051849

    Article  Google Scholar 

  • Ju YM, Rogers JD (1996) A revision of the genus Hypoxylon. In: Mycologia memoir no. 20. APS Press, St. Paul

    Google Scholar 

  • Katoh M, Kuma M (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Kendrick B (2003) Analysis of morphogenesis in hyphomycetes: new characters derived from considering some conidiophores and conidia as condensed hyphal systems. Can J Bot 81:75–100

    Article  Google Scholar 

  • Kirschner R (2015) Phylogenetic placement of a new species of Corynesporopsis from dead acacia wood indicates occurrence of tretic conidiogenesis within Xylariales. Phytotaxa 192:24–34. https://doi.org/10.11646/phytotaxa.192.1.3

    Article  Google Scholar 

  • Konta S, Hongsana S, Tibpromma S, Thongbai B, Maharachchikumbura SSN, Bahkali AH, Hyde KD, Boonmee S (2016) An advance in the endophyte story: Oxydothidaceae fam. nov. with six new species of Oxydothis. Mycosphere 7:1425–1446. https://doi.org/10.5943/mycosphere/7/9/15

    Article  Google Scholar 

  • Kornerup A, Wanscher JH (1991) Farver I Farver. Betemmelse af Farver. Politikens Forlag, Copenhagen

    Google Scholar 

  • Koukol O, Kelnarová I, Černý K (2015) Recent observations of sooty bark disease of sycamore maple in Prague (Czech Republic) and the phylogenetic placement of Cryptostroma corticale. For Path 45(1):21–27

    Article  Google Scholar 

  • Kuhnert E, Fournier J, Persoh D, Luangsa-Ard JJ, Stadler M (2014) New Hypoxylon species from Martinique and new evidence on the molecular phylogeny of Hypoxylon based on ITS rDNA and beta-tubulin data. Fungal Divers 64:181–203

    Article  Google Scholar 

  • Kuhnert E, Sir EB, Lambert C, Hyde KD, Hladki AI, Romero AI, Rohde M, Stadler M (2017) Phylogenetic and chemotaxonomic resolution of the genus Annulohypoxylon (Xylariaceae) including four new species. Fungal Divers 85:1–43

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li QR, Kang JC, Hyde KD (2015a) Two new species of the genus Collodiscula (Xylariaceae) from China. Mycol Prog 14:52. https://doi.org/10.1007/s11557-015-1075-6

    Article  Google Scholar 

  • Li WJ, Maharachchikumbura SSN, Li QR, Bhat DJ, Camporesi E, Tian Q, Senanayake IC, Dai DQ, Chomnunti P, Hyde KD (2015b) Epitypification of Broomella vitalbae and introduction a novel species of Hyalotiella. Cryptogam Mycol 36:93–108

    Article  Google Scholar 

  • Lumbsch HT, Wirtz N, Lindemuth R, Schmitt I (2002) Higher level phylogenetic relationships of Euascomycetes (Pezizomycotina) inferred from a combined analysis of nuclear and mitochondrial sequence data. Mycol Prog 1:57–70. https://doi.org/10.1007/s11557-006-0005-z

    Article  Google Scholar 

  • Lygis V, Vasiliauskas R, Larsson KH, Stenlid J (2005) Wood-inhabiting fungi in stems of Fraxinus excelsior in declining ash stands of northern Lithuania, with particular reference to Armillaria cepistipes. Scand J For Res 20:337–346. https://doi.org/10.1080/02827580510036238

    Article  Google Scholar 

  • Maharachchikumbura SS, Hyde KD, Groenewald JZ, Xu J, Crous PW (2014) Pestalotiopsis revisited. Stud Mycol 79:121–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malloch D (1981) Moulds: their isolation, cultivation and identification. University of Toronto Press, Toronto

    Google Scholar 

  • McTaggart AR, Grice KR, Shivas RG (2013) First report of Vialaea minutella in Australia, its association with mango branch dieback and systematic placement of Vialaea in the Xylariales. Australas Plant Dis 8:63–66. https://doi.org/10.1007/s13314-013-0096-8

    Article  Google Scholar 

  • Morelet M (1971) De aliquibus in Mycologia Novitatibus. Bulletin de la Société des Sciences Naturelles et d’Archéologie de Toulon et du Var 195:7

    Google Scholar 

  • Nonaka K, Ishii T, Shiomi K, Ōmura S, Masuma R (2013) Virgaria boninensis, a new hyphomycete (Xylariaceae) from soils in the Bonin Islands, Japan. Mycoscience 54:394–399. https://doi.org/10.1016/j.myc.2013.01.004

    Article  Google Scholar 

  • Norphanphoun C, Wen TC, Hyde KD (2016) Fungal diversity notes 461:207

  • Okane I, Nakagiri A (2007) Taxonomy of an anamorphic xylariaceous fungus from a termite nest found together with Xylaria angulosa. Mycoscience 48:240–249. https://doi.org/10.1007/s10267-007-0361-9

    Article  CAS  Google Scholar 

  • Quaedvlieg W, Verkley GJ, Shin HD, Barreto RW, Alfenas AC, Swart WJ, Groenewald JZ, Crous PW (2013) Sizing up Septoria. Stud Mycol 75(1):307–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajeshkumar KC, Marathe SD, Madhusudhanan K, Castañeda-Ruíz RF (2016a) Taxonomic re-evaluation and phylogenetic position of Hemibeltrania cinnamomi within Xylariales. Mycotaxon 131:87–94. https://doi.org/10.5248/131.87

    Article  Google Scholar 

  • Rajeshkumar KC, Crous PW, Groenewald JZ, Seifert KA (2016b) Resolving the phylogenetic placement of Porobeltraniella and allied genera in the Beltraniaceae. Mycol Prog 15:1119–1136. https://doi.org/10.1007/s11557-016-1234-4

    Article  Google Scholar 

  • Réblová M, Miller AN, Réblová K, Štěpánek V (2018) Phylogenetic classification and generic delineation of Calyptosphaeria gen. nov., Lentomitella, Spadicoides and Torrentispora (Sordariomycetes). Stud Mycol 89:1–62. https://doi.org/10.1016/j.simyco.2017.11.004

    Article  PubMed  Google Scholar 

  • Samuels GJ, Rossman AY (1987) Studies in the Amphisphaeriaceae (sensu lato) 2. Leiosphaerella cocoës and two new species of Oxydothis on palms. Mycotaxon 28:461–471

    Google Scholar 

  • Seifert KA, Morgan-Jones G, Gams W, Kendrick B (2011) The genera of hyphomycetes. In: CBS Biodiversity Series no. 9:1–997. CBS-KNAW Fungal Biodiversity Centre, Utrecht

    Google Scholar 

  • Senanayake IC, Maharachchikumbura SSN, Mortimer PE, Xu J, Bhat JD, Hyde KD (2014) Vialaeaceae; introducing a novel species Vialaea mangiferae. Sydowia 66:203–216

    Google Scholar 

  • Senanayake IC, Maharachchikumbura SSN, Hyde KD, Bhat JD, Garet Jones EB, McKenzie EHC, Dai DQ, Daranagama DA, Dayarathne MC, Goonasekara ID, Konta S, Li WJ, Shang QJ, Stadler M, Wijayawarddene NN, Xiao YP, Norphanphoun CH, Li Q, Liu XZ, Bahkali AH, Kang JCH, Wang Y, Wen TCH, Wendt L, Xu JCH, Camporesi E (2015) Towards unraveling relationships in Xylariomycetidae (Sordariomycetes). Fungal Divers 73:73–144. https://doi.org/10.1007/s13225-015-0340-y

    Article  Google Scholar 

  • Shenoy DB, Jeewon R, Wu PW, Bhat JD, Hyde KD (2006) Ribosomal and RPB2 DNA sequence analyses suggest that Sporidesmium and morphologically similar genera are polyphyletic. Mycol Res 110:916–928. https://doi.org/10.1016/j.mycres.2006.06.004

    Article  CAS  PubMed  Google Scholar 

  • Sir EB, Lambert C, Wendt L, Hladki AI, Romero AI, Stadler M (2016) A new species of Daldinia (Xylariaceae) from the argentine subtropical montane forest. Mycosphere 7(9):1378–1388. https://doi.org/10.5943/mycosphere/si/4g/2

    Article  Google Scholar 

  • Smith GJ, Liew EC, Hyde KD (2003) The Xylariales: a monophyletic order containing 7 families. Fungal Divers 13:185–218

    Google Scholar 

  • Spatafora JW, Sung GH, Johnson D, Hesse C, O’Rourke B, Serdani M, Spotts R, Lutzoni F, Hofstetter V, Miadlikowska J, Reeb V, Gueidan C, Fraker E, Lumbsch T, Lucking R, Schmitt I, Hosaka K, Aptroot A, Roux C, Miller AN, Geiser DM, Hafellner J, Hestmark G, Arnold AE, Budel B, Rauhut A, Hewitt D, Untereiner WA, Cole MS, Scheidegger C, Schultz M, Sipman H, Schoch CL (2006) A five-gene phylogeny of Pezizomycotina. Mycologia 98(6):1018–1028

    Article  CAS  PubMed  Google Scholar 

  • Stadler M, Kuhnert E, Peršoh D, Fournier J (2013) The Xylariaceae as model example for a unified nomenclature following the “one fungus-one name” (1F1N) concept. Mycol Int J Fungal Biol 4:5–21

    CAS  Google Scholar 

  • Stadler M, Læssøe T, Fournier J, Decock C, Schmieschek B, Tichy H-V, Peršoh D (2014) A polyphasic taxonomy of Daldinia (Xylariaceae). Stud Mycol 77:1–143. https://doi.org/10.1016/S0166-0616(14)60233-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Subramanian CV, Sudha K (1978) Ardhachandra, a new genus of Hyphomycetes. Can J Bot 56:729–731

    Article  Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after re-moving divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577

    Article  CAS  PubMed  Google Scholar 

  • Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+ C-content biases. Mol Biol Evol 9:678–687. https://doi.org/10.1093/oxfordjournals.molbev.a040752

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

    Article  CAS  PubMed  Google Scholar 

  • Tang AM, Jeewon R, Hyde KD (2007) Phylogenetic utility of protein (RPB2, beta-tubulin) and ribosomal (LSU, SSU) gene sequences in the systematics of Sordariomycetes (Ascomycota, Fungi). Antonie Van Leeuwenhoek 91:327–349

    Article  CAS  PubMed  Google Scholar 

  • Tangthirasunun N, Silar P, Bhat DJ, Maharachchikumbura SSN, Wijayawardene NN, Bahkali AH, Hyde KD (2015) Morphology and phylogeny of appendaged genera of coelomycetes: Ciliochorella and Discosia. Sydowia 67:217–226

    Google Scholar 

  • Triebel D, Peršoh D, Wollweber H, Stadler M (2005) Phylogenetic relationsships among Daldinia, Entonaema, and Hypoxylon as inferred from ITS nrDNA analyses of Xylariales. Nova Hedwigia 80:25–43

    Article  Google Scholar 

  • Trouillas FP, Urbez-Torres JR, Gubler WD (2010) Diversity of diatrypaceous fungi associated with grapevine canker diseases in California. Mycologia 102(2):319–336

    Article  CAS  PubMed  Google Scholar 

  • Voglmayr H, Friebes G, Gardiennet A, Jaklitsch WM (2018) Barrmaelia and Entosordaria in Barrmaeliaceae (fam. nov., Xylariales), and critical notes on Anthostomella-like genera based on multi-gene phylogenies. Mycol Prog 17:155–177. https://doi.org/10.1007/s11557-017-1329-6

    Article  PubMed  Google Scholar 

  • Wendt L, Sir EB, Kuhnert E, Heitkämper S, Lambert C, Hladki AI, Romero AI, Luangsa-ard JJ, Srikitikulchai P, Peršoh D, Stadler M (2018) Resurrection and emendation of the Hypoxylaceae, recognised from a multi-gene genealogy of the Xylariales. Mycol Prog 17:115–154

    Article  Google Scholar 

  • Zhang N, Castlebury LA, Miller AN, Huhndorf SM, Schoch CL, Seifert KA, Rossman AY, Rogers JD, Kohlmeyer J, Volkmann-Kohlmeyer B, Sung GH (2006) An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia 98:1076–1087

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Biol. Magda Gómez Columna for assistance in searching bibliographic information and technical assistance and Dr. Shaun Pennycook for nomenclatural advice. The authors are very grateful to Dr. James A. LaMondia for his pre-submission review. RCR is grateful to OSDE, Grupo Agrícola from Cuban Ministry of Agriculture for facilities.

Funding

DWL received financial support from USDA Hatch grant (CONH00813). The study was financially supported by the Mexican National Council of Science and Technology (CONACYT/PROJECT No.225382) and by a long-term research development project of the Institute of Botany (No. RVO 67985939) and the Institute of Microbiology (No. RVO 61388971) of the Czech Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Heredia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Section Editor: Roland Kirschner

Electronic supplementary material

ESM 1

(HTML 417 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heredia, G., Li, DW., Wendt, L. et al. Natonodosa speciosa gen. et sp. nov. and rediscovery of Poroisariopsis inornata: neotropical anamorphic fungi in Xylariales. Mycol Progress 19, 15–30 (2020). https://doi.org/10.1007/s11557-019-01537-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-019-01537-8

Keywords

Navigation