Skip to main content
Log in

Species clarification of oyster mushrooms in China and their DNA barcoding

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Species of the Pleurotus ostreatus complex (oyster mushrooms) are one of the main groups of cultivated edible mushrooms in China, with abundant strains and a complex genetic background. Although the cultivation of oyster mushrooms is a very important industry in China, the inconsistent nomenclature of the complex is controversial and has led to much confusion and economic loss in the mushroom industry. In this study, we performed molecular identification of the species complex based on sequences of the internal transcribed spacer region (ITS), translation elongation factor 1-α (TEF1), and two genes that encode subunits of RNA polymerase II (RPB1 and RPB2). A total of 284 samples with different commercial names gathered from different mushroom spawn preservation centers, companies, and field isolations were investigated via phylogenetic analyses inferred from a single locus or multi-loci. Our analyses indicated that 56% of the strains were labeled with improper scientific names and that all of the strains could be divided into seven lineages, representing one morphological species each, namely P. abieticola, P. eryngii, P. cf. floridanus, P. ostreatus, P. placentodes, P. pulmonarius, and P. tuoliensis. Reference sequences for accurate identification of the taxa were developed or suggested. Meanwhile, we evaluated the suitability of the four candidate segments as DNA barcodes. Our analyses indicated that RPB2 was the most promising candidate segment of DNA barcode for the P. ostreatus species complex, taking into consideration the polymorphisms and other aspects of the four markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albertó EO, Petersen RH, Karen WH, Bernardo L (2002) Miscellaneous notes on Pleurotus. Persoonia 18:55–69

    Google Scholar 

  • Anderson NA, Schwandt JW (1973) The Pleurotus ostreatus-sapidus species complex. Mycologia 65:28–35

    Article  Google Scholar 

  • Armstrong KF, Ball SL (2005) DNA barcodes for biosecurity: invasive species identification. Philos Trans R Soc B 360:1813–1823

    Article  CAS  Google Scholar 

  • Avin FA, Bhassu S, Shin TY, Sabaratnam V (2012) Molecular classification and phylogenetic relationships of selected edible Basidiomycetes species. Mol Biol Rep 39:7355–7364

    Article  CAS  PubMed  Google Scholar 

  • Avise JC, Wollenberg K (1997) Phylogenetics and the origin of species. Proc Natl Acad Sci USA 94:7748–7755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balasundaram SV, Engh IB, Skrede I, Kauserud H (2015) How many DNA markers are needed to reveal cryptic fungal species? Fungal Biol 119:940–945

    Article  CAS  PubMed  Google Scholar 

  • Bao DP, Ishihara H, Mori N (2004) Phylogenetic analysis of oyster mushrooms (Pleurotus spp.) based on restriction fragment length polymorphism of 5′portion of 26s rDNA. J Wood Sci 50:169–176

    CAS  Google Scholar 

  • Bobovčák M, Kuniaková R, Gabriž J, Majtán J (2010) Effect of Pleuran (β-glucan from Pleurotus ostreatus) supplementation on cellular immune response after intensive exercise in elite athletes. Appl Physiol Nutr Metab 35:755–762

    Article  PubMed  CAS  Google Scholar 

  • Buchanan PK (1993) Identification, names and nomenclature of common edible mushrooms. In: Chang ST, Buswell JA, Chiu SW (eds) Mushroom Biology and Mushroom Products. The Chinese University Press, Hong Kong, pp 21–32

    Google Scholar 

  • Bunyard BA, Chaichuchote S, Nicholson MS, Royse DJ (1996) Ribosomal DNA analysis for resolution of genotypic classes of Pleurotus. Mycol Res 100:143–150

    Article  CAS  Google Scholar 

  • Choi DB, Ding JL, Cha WS (2007) Homology search of genus Pleurotus using an internal transcribed spacer region. Korean J Chem Eng 24:408–412

    Article  CAS  Google Scholar 

  • Cox JPL (2001) Barcoding objects with DNA. Analyst 126:545–547

    Article  CAS  PubMed  Google Scholar 

  • Dentinger BTM, Didukh MY, Moncalvo JM (2011) Comparing COI and ITS as DNA barcode markers for mushrooms and allies (Agaricomycotina). PLoS One 6:e25081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dettman JR, Jacobson DJ, Turner E, Pringle A, Taylor JW (2003) Reproductive isolation and phylogenetic divergence in Neurospora: comparing methods of species recognition in a model eukaryote. Evolution 57:2721–2741

    Article  PubMed  Google Scholar 

  • Dettman JR, Jacobson DJ, Taylor JW (2006) Multilocus sequence data reveal extensive phylogenetic species diversity within the Neurospora discreta complex. Mycologia 98:436–446

    Article  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochem Bull 19:11–15

    Google Scholar 

  • Du XH, Zhao Q, Yang ZL, Hansen K, Taskin H, Buyukalaca S, Dewsbury D, Moncalvo JM, Douhan GW, Robert VARG, Crous PW, Rehner SA, Rooney AP, Sink S, O′Donnell K (2012) How well do ITS rDNA sequences differentiate species of true morels (Morchella). Mycologia 104:1351–1368

    Article  PubMed  Google Scholar 

  • Dupuis JR, Roe AD, Sperling FAH (2012) Multi-locus species delimitation in closely related animals and fungi: one marker is not enough. Mol Ecol 21:4422–4436

    Article  PubMed  Google Scholar 

  • Eason RG, Pourmand N, Tongprasit W, Herman ZS, Anthony KP, Jejelowo O, Davis R, Stolc V (2004) Characterization of synthetic DNA barcodes in Saccharomyces cerevisiae gene-deletion strains. Proc Natl Acad Sci USA 2:285–288

    Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eger G (1976) Rapid method for breeding Pleurotus ostreatus. Mushroom Sci 9:567–576

    Google Scholar 

  • Eger G, Eden G, Wissig E (1976) Pleurotus ostreatus-breeding potential of a new cultivated mushroom. Theor Appl Genet 47:155–163

    Article  CAS  PubMed  Google Scholar 

  • Estrada AE, Jimenez-Gasco MM, Royse DJ (2010) Pleurotus eryngii species complex: sequence analysis and phylogeny based on partial EF1α and RPB2 genes. Fungal Biol 114:421–428

    Article  CAS  PubMed  Google Scholar 

  • Eugenio CP, Anderson NA (1968) The genetics and cultivation of Pleurotus ostreatus. Mycologia 60:627–634

    Article  Google Scholar 

  • Fell JW, Scorzetti G, Statzell-Tallman A, Boundy-Mills K (2007) Molecular diversity and intragenomic variability in the yeast genus Xanthophyllomyces: The origin of Phaffia rhodozyma? FEMS Yeast Res 7:1399–1408

    Article  CAS  PubMed  Google Scholar 

  • Froslev TG, Matheny PB, Hibbett DS (2005) Lower level relationships in the mushroom genus Cortinarius (Basidiomycota, Agaricales): a comparison of RPB1, RPB2, and ITS phylogenies. Mol Phylogenet Evol 37:602–618

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Huang CY, Chen Q, Bian YB, Zhang JX (2008) Phylogenetic relationship of Pleurotus species based on nuclear large subunit ribosomal DNA sequence. J Plant Genet Resour 9:328–334

    CAS  Google Scholar 

  • Garbelotto M, Otrosina WJ, Cobb FW, Bruns TD (1998) The European S and F intersterility groups of Heterobasidion annosum may represent sympatric protospecies. Can J Bot 76:397–409

    CAS  Google Scholar 

  • Gonzalez P, Labarère J (2000) Phylogenetic relationships of Pleurotus species according to the sequence and secondary structure of the mitochondrial small-subunit rRNA V4, V6 and V9 domains. Microbiology 146:209–221

    Article  CAS  PubMed  Google Scholar 

  • Guzmán G, Montoya L, Mata G, Salmones D (1994) Studies in the genus Pleurotus, III: The varieties of P. ostreatus-complex based in interbreeding strains and in the study of basidiomata obtained in culture. Mycotaxon 50:365–378

    Google Scholar 

  • Guzmán G, Montoya L, Bandala VM, Mata G, Salmones D (1995) Studies in the genus Pleurotus, IV. Observations on the pink forms growing in Mexico based in the interbreeding of two different strains. Mycotaxon 53:247–259

    Google Scholar 

  • Hadar Y, Kerem Z, Gorodecki B (1993) Biodegradation of lignocellulosic agricultural wastes by Pleurotus ostreatus. J Biotechnol 30:133–139

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identification through DNA barcodes. Proc R Soc London B 270:313–231

    Article  CAS  Google Scholar 

  • Hughes KW, Petersen RH (2001) Apparent recombination or gene conversion in the ribosomal ITS region of a Flammulina (Fungi, Agaricales) hybrid. Mol Biol Evol 18:94–96

    Article  CAS  PubMed  Google Scholar 

  • Iracalbal B, Zervakis G, Labarere J (1995) Molecular systematics of the genus Pleurotus: analysis of restriction polymorphisms in ribosomal DNA. Microbiology 141:1479–1490

    Article  Google Scholar 

  • Ito Y, Fushimi T, Yanagi SO (1998) Discrimination of species and strains of basidiomycete genus Coprinus by random amplified polymorphic DNA (RAPD) analysis. Mycoscience 39:361–365

    Article  CAS  Google Scholar 

  • James SA, West C, Davey RP, Dicks J, Robert LN (2016) Prevalence and dynamics of ribosomal DNA micro-heterogeneity are linked to population history in two contrasting yeast species. Sci Rep. doi:10.1038/srep28555

    Google Scholar 

  • Justo A, Vizzini A, Minnis AM, Menolli N, Capelari M, Rodriguez O, Malysheva E, Contu M, Ghignone S, Hibbett DS (2011) Phylogeny of the Pluteaceae (Agaricales, Basidiomycota): taxonomy and character evolution. Fungal Biol 115:1–20

    Article  PubMed  Google Scholar 

  • Kauserud H, Svegården IB, Decock C, Hallenberg N (2007) Hybridization among cryptic species of the cellar fungus Coniophora puteana (Basidiomycota). Mol Ecol 16:389–399

    Article  CAS  PubMed  Google Scholar 

  • Kawai G, Babasaki K, Neda H (2008) Taxonomic position of a Chinese Pleurotus “Bai-Ling-Gu”: it belongs to Pleurotus eryngii (DC.: Fr.) Quél. and evolved independently in China. Mycoscience 49:75–87

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kiss L (2012) Limits of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences as species barcodes for Fungi. Proc Natl Acad Sci USA 109:e1811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Gac M, Hood ME, Fournier E, Giraud T (2007) Phylogenetic evidence of host-specific cryptic species in the anther smut fungus. Evolution 61:15–26

    Article  PubMed  CAS  Google Scholar 

  • Le QV, Won HK, Lee TS, Lee CY, Lee HS, Ro HS (2008) Retrotransposon microsatellite amplified polymorphism strains fingerprinting markers applicable to various mushroom species. Mycobiology 36:161–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HK, Shin CS, Min KB, Choi KS, Kim BG, Yoo YB, Min KH (2000) Molecular systematics of the genus Pleurotus using sequence-specific oligonucleotide probes. Sci Cultivation Edible Fungi 1–2:207–213

    Google Scholar 

  • Li Y, Jiao L, Yao YJ (2013) Non-concerted ITS evolution in fungi, as revealed from the important medicinal fungus Ophiocordyceps sinensis. Mol Phylogenet Evol 68:373–379

    Article  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Lindner DL, Banik MT (2011) Intragenomic variation in the ITS rDNA region obscures phylogenetic relationships and inflates estimates of operational taxonomic units in genus Laetiporus. Mycologia 103:731–740

    Article  PubMed  Google Scholar 

  • Liu YJ, Hall BD (1999) Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808

    Article  CAS  PubMed  Google Scholar 

  • Liu SY, Zhang A, Li Y (2012) Principle and procedure of fungal DNA barcoding. J Fungal Res 10:205–209

    CAS  Google Scholar 

  • Liu XB, Feng B, Li J, Yan C, Yang ZL (2016a) Genetic diversity and breeding history of Winter Mushroom (Flammulina velutipes) in China uncovered by genomic SSR markers. Gene 591:227–235

    Article  CAS  PubMed  Google Scholar 

  • Liu XB, Li J, Horak E, Yang ZL (2016b) Pleurotus placentodes, originally described from Sikkim, rediscovered after 164 years. Phytotaxa 267:137–145

    Article  Google Scholar 

  • Mapook A, Boonmee S, Ariyawansa HA, Tibpromma S, Campesori E, Gareth Jones EB, Bahkail AH, Hyde KD (2016) Taxonomic and phylogenetic placement of Nodulosphaeria. Mycol Prog. doi:10.1007/s11557-016-1176-x

    Google Scholar 

  • Matheny PB (2005) Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe, Agaricales). Mol Phylogenet Evol 35:1–20

    Article  CAS  PubMed  Google Scholar 

  • Matheny PB (2006) PCR Primers to Amplify and Sequence rpb2 (RNA polymerase II second largest subunit) in the Basidiomycota (Fungi). http://www.clarku.edu/faculty/dhibbett

  • Matheny PB, Liu YJ, Ammirati JF, Hall B (2002) Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). Am J Bot 89:688–698

    Article  CAS  PubMed  Google Scholar 

  • Meng Y, Jiang CS, Liao WT, Zhang YZ (2003) AFLP fingerprinting map analysis of Pleurotus ostreatus. J Genet Genomics 30:1140–1146

    CAS  Google Scholar 

  • Menolli N Jr, Breternitz BS, Capelari M (2014) The genus Pleurotus in Brazil: a molecular and taxonomic overview. Mycoscience 55:378–389

    Article  Google Scholar 

  • Meyer CP, Paulay G (2005) DNA barcoding: Error rates based on comprehensive sampling. PLoS Biol 3:e422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montcalvo JM, Lutzoni FM, Rehner SA, Johnson J, Vilgalys R (2000) Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Syst Biol 49:278–305

    Article  Google Scholar 

  • Morin L, van der Merwe M, Hartley D, Müller P (2009) Putative natural hybrid between Puccinia lagenophorae and an unknown rust fungus on Senecio madagascariensis in KwaZulu-Natal, South Africa. Mycol Res 113:725–736

    Article  CAS  PubMed  Google Scholar 

  • Moriwaki J, Tsukiboshi T, Sato T (2002) Grouping of Colletotrichum species in Japan based on rDNA sequences. J Gen Plant Pathol 68:307–320

    Article  CAS  Google Scholar 

  • Mou CJ, Cao YQ, Ma JL (1987) A new variety of Pleurotus eryngii and its cultural characters. Mycosystema 6:153–156

    Google Scholar 

  • Murakami S, Takemaru T (1990) Genetic studies of Pleurotus salmoneostramineus forming albino basidiocarps. Rep Tottori Mycol Inst 28:199–204

    Google Scholar 

  • Newcombe G, Stirling B, McDonald S, Bradshaw HD (2000) Melampsora × columbiana, a natural hybrid of M. medusa and M. occidentalis. Mycol Res 104:261–274

    Article  Google Scholar 

  • Nylander JAA (2004) MrModeltest v2.2 Program distributed by the author. In: Evolutionary Biology Centre, Uppsala University

  • Omarini AB, Plagemann I, Schimanski S, Krings U, Berger RG (2014) Crosses between monokaryons of Pleurotus sapidus or Pleurotus florida show an improved biotransformation of (+)-valencene to (+)-nookatone. Bioresour Technol 171:113–119

    Article  CAS  PubMed  Google Scholar 

  • Pegler DN (1996) Hyphal analysis of basidiomata. Mycol Res 100:129–142

    Article  Google Scholar 

  • Ravash R, Shiran B, Alavi AA, Bayat F, Rajaee S, Zervakis GI (2010) Genetic variability and molecular phylogeny of Pleurotus eryngii species-complex isolates from Iran, and notes on the systematics of Asiatic populations. Mycol Prog 9:181–194

    Article  Google Scholar 

  • Rehner S (2001) Primers for the elongation factor 1-α (tef1-α). http://www.aftol.org/pdfs/EF1 primer. pdf

  • Reid DA, Eicker A, De Kock A (1998) Pleurotus fuscosquamulosus–a new species of Pleurotus subgenus Coremiopleurotus from South Africa. Mycotaxon 66:137–152

    Google Scholar 

  • Roger AJ, Sandblom O, Doolittle WF, Philippe H (1999) An evaluation of elongation factor 1 α as a phylogenetic marker for eukaryotes. Mol Biol Evol 16:218–233

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Rooney AP, Ward TJ (2005) Evolution of a large ribosomal RNA multigene family in filamentous fungi: Birth and death of a concerted evolution paradigm. Proc Natl Acad Sci U S A 102:5084–5089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Salas-Lizana R, Santini NS, Miranda-Perez A, Pinero DI (2012) The Pleistocene glacial cycles shaped the historical demography and phylogeography of a pine fungal endophyte. Mycol Prog 11:569–581

    Article  Google Scholar 

  • Samerpitak K, Van der Linde E, Choi HJ, Gerrits van den Ende AHG, Machouart M, Gueidan C, de Hoog GS (2014) Taxonomy of Ochroconis, genus including opportunistic pathogens on humans and animals. Fungal Divers 65:89–126

    Article  Google Scholar 

  • Sánchez C (2004) Modern aspects of mushrooms culture technology. Appl Microbiol Biotechnol 64:756–762

    Article  PubMed  CAS  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segedin BP, Buchnan PK, Wilkie JP (1995) Studies in the Agaricales of New Zealand: new species, new records and renamed species of Pleurotus (Pleurotaceae). Aust Syst Bot 8:453–482

    Article  Google Scholar 

  • Seifert KA, Crous PW (2008) The All-Fungi DNA Barcoding Campaign (FunBOL). Persoonia 20:106

    Google Scholar 

  • Seifert KA, Samson RA, DeWaard JR, Houbraken J, Lévesque CA, Moncalvo JM, Louis-Seize G, Hebert PDN (2007) Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci USA 104:3901–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvakumar P, Rajasekar S, Babu AG, Periasamy K, Raaman N, Reddy MS (2015) Improving biological efficiency of Pleurotus strain through protoplast fusion between P. ostreatus var. florida and P. djamor var. roseus. Food Sci Biotechnol 24:1741–1748

    Article  CAS  Google Scholar 

  • Shen JW, Zhao X, Li Y, Guan YY, Wang Z, Qi YC, Zhang JX (2011) Evaluation of germplasm resources with cultivated Pleurotus spp. strains in Henan Province. J Henan Agric Univ 45:297–301

    Google Scholar 

  • Shen LL, Chen JJ, Wang M, Cui BK (2016) Taxonomy and multi-gene phylogeny of Haploporus (Polyporales, Basidiomycota). Mycol Prog 15:731–742

    Article  Google Scholar 

  • Shnyreva AA, Shnyreva AV (2015) Phylogenetic analysis of Pleurotus species. Russ J Genet 51:177–187

    Article  CAS  Google Scholar 

  • Shnyreva A, Shtaer O (2006) Differentiation of closely related oyster fungi Pleurotus pulmonarius and P. ostreatus by mating and molecular markers. Russ J Genet 42:539–545

    Article  CAS  Google Scholar 

  • Shnyreva AV, Belokon YS, Belokon MM, Altukhov YP (2004) Interspecific genetic variability of the oyster mushroom Pleurotus ostreatus as revealed by allozyme gene analysis. Russ J Genet 40:871–881

    Article  CAS  Google Scholar 

  • Singer R (1986) The Agaricales in modern taxonomy. 4th edit. Koeltz Scientific Books, Koenigstein, pp 174–179

    Google Scholar 

  • Skrede I, Carlsen T, Stensrud Ø, Kauserud H (2012) Genome wide AFLP markers support cryptic species in Coniophora (Boletales). Fungal Biol 116:778–784

    Article  CAS  PubMed  Google Scholar 

  • Song C, Chen Q, Xu JY, Zhang JX, Bian YB, Huang CY (2011) Application of CO1 for rapid identification of Pleurotus species. Mycosystema 30:663–668

    CAS  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Stephens M, Donnelly P (2003) A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stielow JB, Lévesque CA, Seifert KA et al (2015) One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia 35:242–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Steker G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanabe Y, Saikawa M, Watanabe MM, Sugiyama J (2004) Molecular phylogeny of Zygomycota based on EF-1α and RPB1 sequences: limitations and utility of alternative markers to rDNA. Mol Phylogenet Evol 30:438–449

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi M, Suzuki H, Watanabe D, Sahai K, Hoshino K, Tanaka T (2005) Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci Bioeng 100:637–643

    Article  CAS  PubMed  Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32

    Article  CAS  PubMed  Google Scholar 

  • Terakawa H (1960) The incompatibility factors in Pleurotus ostreatus. Set Pap Coll Gen Educ, Univ Tokyo 10:65–71

    Google Scholar 

  • Vilgalys R, Moncalvo JM, Liou SR, Volovsek M (1996) Recent advances in molecular systematics of the genus Pleurotus. Mushroom Biol Mushroom Prod 91–101

  • Wang DM, Yao YJ (2005) Intrastrain internal transcribed spacer heterogeneity in Ganoderma species. Can J Microbiol 51:113–121

    Article  CAS  PubMed  Google Scholar 

  • Wang WJ, Wang XL, Wang XC, Yu XD, Li Y, Wei TZ, Yao YJ (2009) Application of DNA Barcoding in Fungal Research. Front Sci 3:4–12

    CAS  Google Scholar 

  • Wasser SP, Sokolov D, Reshetnikov SV, Timor-Tismenetsky M (2000) Dietary Supplements from medicinal mushrooms: diversity of types and variety of regulations. Int J Med Mushrooms 2:1–19

    Article  CAS  Google Scholar 

  • White TJ, Burns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wu SR, Zhao CY, Hou B, Tai LM, Gui MY (2013) Analysis on Chinese edible fungus production area layout of nearly five years. Edible Fungi China 32:51–53

    Google Scholar 

  • Xu K, Kanno M, Yu H, Li Q, Kijima A (2011) Complete mitochondrial DNA sequence and phylogenetic analysis of Zhikong scallop Chlamys farreri (Bivalvia: Pectinidae). Mol Biol Rep 38:3067–3074

    Article  CAS  PubMed  Google Scholar 

  • Yang ZL (2011) Molecular techniques revolutionize knowledge of basidiomycete evolution. Fungal Divers 50:47–58

    Article  Google Scholar 

  • Zeng ZQ, Zhao P, Lou J, Zhuang WY, Yu ZH (2012) Selection of a DNA barcode for Nectriaceae from fungal whole genomes. Sci China Life Sci 55:80–88

    Article  CAS  PubMed  Google Scholar 

  • Zervakis GI (1998) Mating competence and biological species within the subgenus Coremiopleurotus. Mycologia 90:1063–1074

    Article  Google Scholar 

  • Zervakis GI, Balis C (1996) A pluralist approach in the study of Pleurotus species with emphasis on compatibility and physiology of the European morphotaxa. Mycol Res 100:717–731

    Article  Google Scholar 

  • Zervakis G, Sourdis J, Balis C (1994) Genetic variability and systematics of eleven Pleurotus ostreatus species based on isozyme analysis. Mycol Res 98:329–341

    Article  CAS  Google Scholar 

  • Zervakis G, Venturella G, Papadopoulou K (2001) Genetic polymorphism and taxonomic relationships of the Pleurotus eryngii species-complex as resolved through the analysis of random amplified DNA patterns, isozyme profiles and ecomorphological characters. Microbiology 147:3183–3194

    Article  CAS  PubMed  Google Scholar 

  • Zervakis GI, Ntougias S, Gargano ML, Besi MI, Polemis E, Typas MA, Venturella G (2014) A reappraisal of the Pleurotus eryngii complex–New species and taxonomic combinations based on the application of a polyphasic approach, and an identification key to Pleurotus taxa associated with Apiaceae plants. Fungal Biol 118:814–834

    Article  PubMed  Google Scholar 

  • Zhang JX, Huang CY, Zhang RY, Guan GP (2004) RAPD and IGS analysis of Pleurotus nebrodensis cultivars in China. Mycosystema 23:514–519

    CAS  Google Scholar 

  • Zhang JX, Huang CY, Ng TB, Wang HX (2006) Genetic polymorphism of ferula mushroom growing on Ferula sinkiangensis. Appl Microbiol Biotechnol 71:304–309

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Luo J, Zhuang WY, Liu XZ, Wu B (2011) DNA barcoding of the fungal genus Neonectria and the discovery of two new species. Sci China Life Sci 54:664–674

    Article  CAS  PubMed  Google Scholar 

  • Zhao MR, Zhang JX, Chen Q, Wu XL, Gao W, Deng WQ, Huang CY (2016) The famous cultivated mushroom Bailinggu is a separate species of the Pleurotus eryngii species complex. Sci Rep 6:33066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng SY, Zhang JX, Wang HX, Huang CY (2003) Polyphasic taxonomy of cultivated oyster mushroom in China. Edible Fungi China 22:3–6

    Google Scholar 

  • Zheng HB, Ma ZG, Lv ZZ, Yu ZH (2006) Identification and evaluation of main cultivated species of Pleurotus in China based on ITS sequence analysis. Mycosystema 25:398–407

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Prof. Dr. Y.C. Zhao (Yunnan Academy of Agricultural Sciences), Mr. F. Nie (Anhui Academy of Agricultural Sciences), Ms. J. Yang (Fujian Academy of Agricultural Sciences), Dr. P. Zhang (Hunan Normal University), Prof. J.W. Shen (Henan Agricultural University), and Dr. X.D. Yu (Shenyang Agricultural University) for providing strains and specimens for this study. The anonymous reviewers are acknowledged for their constructive comments and suggestions. This study is supported by the National Basic Research Program of China (973 Program, No. 2014CB138305) and the Large-scale Scientific Facilities of the Chinese Academy of Sciences (2009-LSFGBOWS-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhu L. Yang or Zhi-Wei Zhao.

Additional information

Section Editor: Marc Stadler

Electronic supplementary material

Below is the link to the electronic supplementary material.

Suppl. Fig. 1

Phylogenetic tree inferred from ML analysis with branch support obtained by ML and BI analyses based on a four-locus (ITS, TEF1, RPB1, and RPB2) dataset. Branch support values are indicated by numbers above branches (ML-BP/BI-PP). Taxon labels indicate strain number listed in Suppl. Table 1. Location of P. ostreatus (P382, P383, CCMSSC 00323) and P. cf. floridanus (P289, P290) are highlighted in blue and red, respectively (GIF 361 kb)

High Resolution (TIF 3012 kb)

Suppl. Fig. 2

Phylogenetic tree inferred from ML analysis with branch support obtained by ML and BI analyses based on ITS, TEF1, RPB1, and RPB2. Branch support values are indicated by numbers above branches (ML-BP/BI-PP). Taxon labels indicate strain number listed in Suppl. Table 1. Strains of P. ostreatus and P. cf. floridanus in single gene phylogeny (ITS, TEF1, and RPB1) are highlighted in purple and red, respectively (GIF 1184 kb)

High Resolution (TIF 31805 kb)

Suppl. Fig. 3

Phylogenetic tree inferred from ML analysis with branch support obtained by ML and BI analyses based on RPB2. Branch support values are indicated by numbers above branches (ML-BP/BI-PP). The strain names labeled on our collections correspond to Suppl. Fig. 2 (GIF 445 kb)

High Resolution (TIF 256266 kb)

Suppl. Fig. 4

Phylogenetic tree inferred from ML analysis with branch support obtained by ML and BI analyses based on TEF1(a) and, RPB1(b). Branch support values are indicated by numbers above branches (ML-BP/BI-PP). The samples of P. ostreatus and P. cf. floridanus were highlighted in different colors (GIF 130 kb)

(GIF 126 kb)

High Resolution (TIF 64912 kb)

High Resolution (TIF 119085 kb)

Suppl. Fig. 5

Phylogenetic relationships among reference collections and other samples of Pleurotus inferred from ITS sequences using ML analysis. Branch support values are indicated by numbers above branches (ML-BP ≥ 70%). Accession numbers for sequences retrieved from GenBank database are listed in Suppl. Table 1. Specimens in P. ostreatus species complex from China are highlighted in blue. Reference collections in single-locus and multi-locus phylogenetic analyses are labeled with a black rectangle (JPEG 1.03 MB)

Suppl. Table 1

Collections of Pleurotus species used in this study and their GenBank accession numbers (DOC 565 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., He, X., Liu, XB. et al. Species clarification of oyster mushrooms in China and their DNA barcoding. Mycol Progress 16, 191–203 (2017). https://doi.org/10.1007/s11557-016-1266-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-016-1266-9

Keywords

Navigation