Skip to main content

Advertisement

Log in

Molecular classification and phylogenetic relationships of selected edible Basidiomycetes species

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Morphological identification of edible mushrooms can sometimes prove troublesome, because phenotypic variation in fungi can be affected by substrate and environmental factors. One of the most important problems for mushroom breeders is the lack of a systematic consensus tool to distinguish different species, which are sometimes morphologically identical. Basidiomycetes as one of the largest groups of edible mushrooms have become more important in recent times for their medicinal and nutritional properties. Partial rDNA sequences, including the Internal Transcribed Spacer I-5.8SrDNA-Internal Transcribed Spacer II, were used in this study for molecular identification and assessment of phylogenetic relationships between selected edible species of the Basidiomycetes. Phylogenetic trees showed five distinct clades; each clade belonging to a separate family group. The first clade included all the species belonging to the Pleurotaceae (Pleurotus spp.) family; similarly, the second, third, fourth, and fifth clades consist of species from the Agaricaceae (Agaricus sp.), Lyophllaceae (Hypsigygus sp.), Marasmiaceae (Lentinula edodes sp.) and Physalacriaceae (Flammulina velutipes sp.) families, respectively. Moreover, different species of each family were clearly placed in a distinct sub-cluster and a total of 13 species were taken for analysis. Species differentiation was re-confirmed by AMOVA analysis (among the populations: 99.67%; within: 0.33%), nucleotide divergence, haplotyping and P value. Polymorphism occurred throughout the ITS regions due to insertion–deletion and point mutations, and can be clearly differentiated within the families as well as genera. Moreover, this study proves that the sequence of the ITS region is a superior molecular DNA barcode for taxonomic identification of Basidiomycetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vikineswary S, Abdullah N, Ibrahim N, How TY, Daud F, Jones EBG (2007) Edible and medical mushroom. In: Jones EBG, Hyde KD, Vikineswary S (eds) Malaysia fungal diversity. University of Malaya and Ministry of Natural Resources and Environment, Malaysia, pp 287–301

    Google Scholar 

  2. Gonzalez P, Labarère J (2000) Phylogenetic relationships of Pleurotus species according to the sequence and secondary structure of the mitochondrial small-subunit rRNA V4, V6 and V9 domains. Microbiology 146(1):209–221

    PubMed  CAS  Google Scholar 

  3. Ravash R, Shiran B, Alavi AA, Bayat F, Rajaee S, Zervakis GI (2010) Genetic variability and molecular phylogeny of Pleurotus eryngii species-complex isolates from Iran, and notes on the systematics of Asiatic populations. Mycol Prog 9(2):181–194

    Article  Google Scholar 

  4. Choi DB, Ding JL, Cha WS (2007) Homology search of genus Pleurotus using an internal transcribed spacer region. Kor J Chem Eng 24(3):408–412

    Article  CAS  Google Scholar 

  5. Ito Y, Fushimi T, Yanagi SO (1998) Discrimination of species and strains of basidiomycete genus Coprinus by random amplified polymorphic DNA (RAPD) analysis. Mycoscience 39(4):361–365

    Article  CAS  Google Scholar 

  6. White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  7. Seifert KA (2009) Progress towards DNA barcoding of fungi. Mol Ecol Resour 9:83–89

    Article  PubMed  CAS  Google Scholar 

  8. Stajic M, Sikorski J, Wasser SP, Nevo E (2005) Genetic similarity and taxonomic relationships within the genus Pleurotus (higher Basidiomycetes) determined by RAPD analysis. Mycotaxon 93:247–256

    Google Scholar 

  9. Ro HS, Kim SS, Ryu JS, Jeon CO, Lee TS, Lee HS (2007) Comparative studies on the diversity of the edible mushroom Pleurotus eryngii: ITS sequence analysis, RAPD fingerprinting, and physiological characteristics. Mycol Res 111(6):710–715

    Article  PubMed  CAS  Google Scholar 

  10. Zervakis GI, Venturella G, Papadopoulou K (2001) Genetic polymorphism and taxonomic infrastructure of the Pleurotus eryngii species-complex as determined by RAPD analysis, isozyme profiles and ecomorphological characters. Microbiology 147(11):3183–3194

    PubMed  CAS  Google Scholar 

  11. Seifert KA, Samson RA, DeWaard JR, Houbraken J, Lévesque CA, Moncalvo JM, Louis-Seize G, Hebert PDN (2007) Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci USA 104(10):3901–3906

    Article  PubMed  CAS  Google Scholar 

  12. Nguyen H, Seifert K (2008) Description and DNA barcoding of three new species of Leohumicola from South Africa and the United States. Persoonia 21:57–69

    Article  PubMed  CAS  Google Scholar 

  13. Chang YS, Lee SS (2004) Utilization of Macrofungi species in Malaysia. Fungal Divers 15:15–22

    Google Scholar 

  14. Weiland JJ (1997) Rapid procedure for the extraction of DNA from fungal spores and mycelia. Fungal Genet Newslett 44:60–63

    Google Scholar 

  15. Gardes M, Bruns T (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2(2):113–118

    Article  PubMed  CAS  Google Scholar 

  16. Xu K, Kanno M, Yu H, Li Q, Kijima A (2011) Complete mitochondrial DNA sequence and phylogenetic analysis of Zhikong scallop Chlamys farreri (Bivalvia: Pectinidae). Mol Biol Rep 38(5):3067–3074

    Article  PubMed  CAS  Google Scholar 

  17. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  PubMed  CAS  Google Scholar 

  18. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132(3):365–386

    PubMed  CAS  Google Scholar 

  19. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452

    Article  PubMed  CAS  Google Scholar 

  20. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol bioinform online 1:47–50

    CAS  Google Scholar 

  21. Siddiquee S, Tan SG, Yusuf UK, Fatihah NH, Hasan MM (2012) Characterization of Malaysian Trichoderma isolates using random amplified microsatellites (RAMS). Mol Biol Rep 39(1):715–722

    Article  PubMed  CAS  Google Scholar 

  22. Shnyreva A, Shtaer O (2006) Differentiation of closely related oyster fungi Pleurotus pulmonarius and P. ostreatus by mating and molecular markers. Rus J Genet 42(5):539–545

    Article  CAS  Google Scholar 

  23. Lechner BE, Petersen R, Rajchenberg M, Albertó E (2002) Presence of Pleurotus ostreatus in Patagonia, Argentina. Revista iberoamericana de micología 19(2):111–114

    PubMed  Google Scholar 

  24. Fries E (1989) 1836–1838. Epicrisis systematis mycologici, synopsis hymenomycetum. Uppsala, Sweden

  25. Singer R (1951) The” Agaricales”(Mushrooms) in modern taxonomy. Lilloa 22: 1–830. 1959. New and interesting species of basidiomycetes. VI. Mycologia 51:375–400

    Article  Google Scholar 

  26. Pegler D, Yi-Jian YA (1995) The distinction between Lentinus sajor-caju and Pleurotus ostreatus and their taxonomy. Acta Botanica Yunnanica 17(3):305–311

    Google Scholar 

  27. Li X, Yao Y (2005) Revision of the taxonomic position of the Phoenix Mushroom. Mycotaxon 91:61–74

    Google Scholar 

  28. Iraçabal B, Zervakis G, Labarère J (1995) Molecular systematics of the genus Pleurotus: analysis of restriction polymorphisms in ribosomal DNA. Microbiology 141:1479–1490

    Article  Google Scholar 

  29. Guzmán G, Montoya L, Mata G, Salmones D (1994) Studies in the genus Pleurotus. III: The varieties of P. ostreatus-complex based in interbreeding strains and in the study of basidiomata obtained in culture. Mycotaxon 50:365–378

    Google Scholar 

  30. Zervakis G, Sourdis J, Balis C (1994) Genetic variability and systematics of eleven Pleurotus species based on isozyme analysis. Mycol Res 98(3):329–341

    Article  CAS  Google Scholar 

  31. Song H, Buhay JE, Whiting MF, Crandall KA (2008) Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc Natl Acad Sci USA 105(36):13486–13491

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a research Grant (PS291-2009C) and 66-02-03-0074 from the Institute of Research Management and Monitoring (IPPP), University of Malaya. We are grateful to Dr. Anke from the Unit for the Enhancement of Academic Performance (ULPA), University of Malaya and Dr. Jesu Arockiaraj for editing. We would also like to thank the mushroom farmers for their cooperation and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subha Bhassu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avin, F.A., Bhassu, S., Shin, T.Y. et al. Molecular classification and phylogenetic relationships of selected edible Basidiomycetes species. Mol Biol Rep 39, 7355–7364 (2012). https://doi.org/10.1007/s11033-012-1567-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1567-2

Keywords

Navigation