Skip to main content
Log in

Hygrocybe virginea is a systemic endophyte of Plantago lanceolata

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Species of Hygrocybe (waxcaps) are mostly colorful mushrooms, which are characteristic of undisturbed grasslands. These fungi are endangered in many places worldwide, but their biology remains a mystery: while isotopic signatures indicate that waxcaps are neither mycorrhizal nor saprotrophic, they were recently observed in plant roots and molecularly detected in aboveground tissues. We aimed to establish a model system of Plantago lanceolata plants colonized by H. coccinea for future detailed studies of the plant–fungus association, and species-specific primers were designed to control infection success and screen environmental samples for waxcaps. The experimentally treated plants grown from surface-sterilized seeds were indeed colonized by waxcaps after 22 weeks of incubation. However, the fungal infection was independent from the experimental treatment and apparently resulted from infected seeds. Screening of field material confirmed that at least one species, i.e., H. virginea, is a maternally transmitted endophytic fungus associated with P. lanceolata. In the experiments, it obviously expanded to the roots during or after seed germination. The endophytic growth is also consistent with the carbon isotopic signature of Hygrocybe, which deviates less from the host plants’ signature than known from ectomycorrhizal associations. However, waxcaps obviously acquire nitrogen (N) from a source outside the plant, like mycorrhizal fungi do. The extensive root system of P. lanceolata is hypothesized to facilitate reaching of nitrogen sources for Hygrocybe which are enriched in the heavier 15 N isotope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Babos M, Halász K, Zagyva T, Zöld-Balogh Á, Szegő D, Bratek Z (2011) Preliminary notes on dual relevance of ITS sequences and pigments in Hygrocybe taxonomy. Persoonia 26:99–107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Behie SW, Zelisko PM, Bidochka MJ (2012) Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science 336:1576–1577

    Article  CAS  PubMed  Google Scholar 

  • Bills GF, Gonzalez-Menendez V, Martin J, Platas G, Fournier J, Peršoh D, Stadler M (2012) Hypoxylon pulicicidum sp nov (Ascomycota, Xylariales), a pantropical insecticide-producing endophyte. Plos One 7:e46687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davis EC, Franklin JB, Shaw AJ, Vilgalys R (2003) Endophytic Xylaria (Xylariaceae) among liverworts and angiosperms: phylogenetics, distribution, and symbiosis. Am J Bot 90:1661–1667

    Article  PubMed  Google Scholar 

  • Debbab A, Aly A, Proksch P (2012) Endophytes and associated marine derived fungi—ecological and chemical perspectives. Fungal Divers 57:45–83

    Article  Google Scholar 

  • Ernst M, Mendgen KW, Wirsel SGR (2003) Endophytic fungal mutualists: seed-borne Stagonospora spp. enhance reed biomass production in axenic microcosms. Mol Plant-Microbe Interact 16:580–587

    Article  CAS  PubMed  Google Scholar 

  • Estrada C, Wcislo WT, Van Bael SA (2013) Symbiotic fungi alter plant chemistry that discourages leaf-cutting ants. New Phytol 198:241–251

    Article  PubMed  Google Scholar 

  • Gebauer G, Taylor AFS (1999) 15N natural abundance in fruit bodies of different functional groups of fungi in relation to substrate utilization. New Phytol 142:93–101

    Article  Google Scholar 

  • Gleixner G, Danier HJ, Werner RA, Schmidt HL (1993) Correlations between the C-13 content of primary and secondary plant-products in different cell compartments and that in decomposing basidiomycetes. Plant Physiol 102:1287–1290

    CAS  PubMed Central  PubMed  Google Scholar 

  • Griffith GW, Easton GL, Jones AW (2002) Ecology and diversity of waxcap (Hygrocybe spp.) Fungi. Bot J Scotl 54:7–22

    Article  Google Scholar 

  • Halbwachs H, Dentinger BT, Detheridge AP, Karasch P, Griffith GW (in press) Hyphae of waxcap fungi colonise plant roots. Fungal Ecology

  • Hamilton C, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54:1–10

    Article  Google Scholar 

  • Hobbie EA, Högberg P (2012) Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol 196:367–382

    Article  CAS  PubMed  Google Scholar 

  • Kearney R, Kearney E (2007) The listing of an Australian Hygrocybeae community: and its holotype species under State and Commonwealth legislations. Field Mycology 8:13–21

    Article  Google Scholar 

  • Kohzu A, Yoshioka T, Ando T, Takahashi M, Koba K, Wada E (1999) Natural 13C and 15N abundance of field-collected fungi and their ecological implications. New Phytol 144:323–330

    Article  Google Scholar 

  • Kutschera L, Lichtenegger E (1992) Wurzelatlas mitteleuropäischer Grünlandpflanzen. Gustav Fischer Verlag, Stuttgart, Jena, New York

    Google Scholar 

  • Lodge DJ, Matheny PB, Cantrell SA, Moncalvo J-M, Vilgalys R, Redhead S (2006) Delineating the Hygrophoraceae: character myths vs. gene trees. Inoculum 57:27. Poster available at http://www.aber.ac.uk/waxcap/downloads/Lodge2006-HygrophoraceaeMSAposter.pdf

  • Mayor JR, Schuur EAG, Henkel TW (2009) Elucidating the nutritional dynamics of fungi using stable isotopes. Ecol Lett 12:171–183

    Article  PubMed  Google Scholar 

  • Oelbermann K, Scheu S (2010) Trophic guilds of generalist feeders in soil animal communities as indicated by stable isotope analysis (15N/14N). Bull Entomol Res 100:511–520

    Article  CAS  PubMed  Google Scholar 

  • Pažoutová S, Follert S, Bitzer J, Keck M, Surup F, Šrůtka P, Holuša J, Stadler M (2013) A new endophytic insect-associated Daldinia species, recognised from a comparison of secondary metabolite profiles and molecular phylogeny. Fungal Divers. doi:10.1007/s13225-013-0238-5

    Google Scholar 

  • Peršoh D (2013) Factors shaping community structure of endophytic fungi–evidence from the Pinus-Viscum-system. Fungal Divers 60:55–69

    Article  Google Scholar 

  • Peršoh D, Melcher M, Flessa F, Rambold G (2010) First fungal community analyses of endophytic ascomycetes associated with Viscum album ssp. austriacum and its host Pinus sylvestris. Fungal Biol 114:585–596

    Article  PubMed  Google Scholar 

  • Peršoh D, Segert J, Zigan A, Rambold G (2013) Fungal community composition shifts along a leaf degradation gradient in a European beech forest. Plant Soil 362:175–186

    Article  Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden Fungi, Emergent Properties: Endophytes and Microbiomes. Annu Rev Phytopathol 49:291–315

    Article  CAS  PubMed  Google Scholar 

  • Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263

    Article  CAS  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance Generated by Plant/Fungal Symbiosis. Science 298:1581

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K, Saari S, Helander M (2010) Defensive mutualism between plants and endophytic fungi? Fungal Divers 41:101–113

    Article  Google Scholar 

  • Seitzman BH, Ouimette A, Mixon RL, Hobbie EA, Hibbett DS (2011) Conservation of biotrophy in Hygrophoraceae inferred from combined stable isotope and phylogenetic analyses. Mycologia 103:280–290

    Article  PubMed  Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal Symbiosis. Academic Press and Elsevier, London

    Google Scholar 

  • Tanaka A, Takemoto D, Chujo T, Scott B (2012) Fungal endophytes of grasses. Curr Opin Plant Biol 15:462–468

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, May T, Smith M (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    Article  PubMed  Google Scholar 

  • Unterseher M (2011) Diversity of Fungal Endophytes in Temperate Forest Trees. In: Pirttilä AM, Frank AC (eds) Endophytes of forest trees. Springer, Netherlands, pp 31–46

    Chapter  Google Scholar 

  • Usuki F, Narisawa K (2007) A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 99:175–184

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sara Troxell (Munich) for confirming generally known isotopic signatures of waxcaps and host plants for the sampling sites. Fruitful discussions with Gerhard Gebauer (Bayreuth) contributed to reaching a conclusive hypothesis. Comments by Thomas D. Bruns (Berkeley) and Deborah Jean Lodge (Luquillo, Puerto Rico) helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek Peršoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tello, S.A., Silva-Flores, P., Agerer, R. et al. Hygrocybe virginea is a systemic endophyte of Plantago lanceolata . Mycol Progress 13, 471–475 (2014). https://doi.org/10.1007/s11557-013-0928-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-013-0928-0

Keywords

Navigation