Skip to main content
Log in

Haplotype variation and phylogeography of Rhizoctonia solani AG1-IA strains based on rDNA5.8S-ITS and ß-actin gene sequence analyses

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

The haplotype variation and phylogeography of Rhizoctonia solani AG1-IA strains were estimated using rDNA5.8S-ITS and ß-actin gene sequences. Two haplotypes of ITS sequences were revealed, designated as ITSa and ITSb. Thirty-four SNPs from the ß-actin gene, which displayed more allele discriminations than rDNA-ITS, were identified. The SNPs were used to classify R. solani into 12 haplotypes, designated as H1–H12. Most SNPs occurred at the third codon position and resulted as silent mutations. Three SNPs occurred at the first codon position and one SNP occurred at the second position, which these four SNPs causing non-synonymous mutations. According to the translational amino acid sequences, the 12 nucleotide-inferred haplotypes were further classified into 5 groups, designated as ITRL, VARI, VARL, VTRI, and VAMI. Analysis of the geographical distribution of 12 haplotypes, showed that H1 and H9 were widely distributed in all studied locations and existed simultaneously in the strains collected in most areas. The results lead to the speculation that H1 and H9 could be the founder haplotypes of ß-actin gene, and other haplotypes might be derived from them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson NA (1982) The genetics and pathology of Rhizoctonia solani. Annu Rev Phytopathol 20:329–347

    Article  Google Scholar 

  • Banniza S, Rutherford MA (2001) Diversity of strains of Rhizoctonia solani AG1-IA and their relationship to other anastomosis groups based on pectic zymograms and molecular analysis. Mycol Res 105:33–40

    Article  CAS  Google Scholar 

  • Chen XJ, Wang L, Zuo SM, Wang ZB, Chen ZX, Zhang YF, Lu GD, Zhou EX, Guo ZJ, Huang SW, Pan XB (2009) Screening of varieties and isolates for identifying interaction between host and pathogen of rice sheath blight. Acta Phytopathol Sin 39:514–520

    Google Scholar 

  • Ciampi MB, Kuramae EE, Fenille RC, Meyer MC, Souza NL, Ceresini PC (2005) Intraspecific evolution of Rhizoctonia solani AG-1 IA associated with soybean and rice in Brazil based on polymorphisms at the ITS-5.8S rDNA operon. Eur J Plant Pathol 113:183–196

    Article  CAS  Google Scholar 

  • Collado-Romero M, Mercado-Blanco J, Olivares-García C, Jiménez-Díaz RM (2008) Phylogenetic analysis of Verticillium dahlia vegetative compatibility groups. Phytopathology 98:1019–1028

    Article  CAS  PubMed  Google Scholar 

  • Daniela HM, Meyera W (2003) Evaluation of ribosomal RNA and actin gene sequences for the identification of ascomycetous yeasts. Int J Food Microbiol 86:61–78

    Article  Google Scholar 

  • de Brito RA, Manfrin MH, Sene FM (2002) Nested cladistic analysis of Brazilian populations of Drosophila serido. Mol Phylogenet Evol 22:131–143

    Article  PubMed  Google Scholar 

  • Duncan S, Barton JE, O’Brien PA (1993) Analysis of variation in strains of Rhizoctonia solani by random amplified polymorphic DNA assay. Mycol Res 97:1075–1082

    Article  CAS  Google Scholar 

  • Grosch R, Schneider JHM, Peth A, Waschke A, Franken P, Kofoet A, Jabaji-Hare SH (2007) Development of a specific PCR assay for the detection of Rhizoctonia solani AG 1-IB using SCAR primers. J Appl Microbiol 102:806–819

    Article  CAS  PubMed  Google Scholar 

  • Helgason T, Watson IJ, Young JPW (2003) Phylogeny of the Glomerales and Diversisporales (Fungi:Glomeromycota) from actin and elongation factor 1-alpha sequences. FEMS Microbiol Lett 229:127–132

    Article  CAS  PubMed  Google Scholar 

  • Howard SJ, Harrison E, Bowyer P, Varga J, Denning DW (2011) Cryptic species and azole resistance in the Aspergillus niger complex. Antimicrob Agents Ch 55:4802–4809

    Article  CAS  Google Scholar 

  • Khodayari M, Safaie N, Shamsbakhsh M (2009) Genetic diversity of Iranian AG1-IA isolates of Rhizoctonia solani, the cause of rice sheath blight, using morphological and molecular markers. J Phytopathol 157:708–714

    Article  CAS  Google Scholar 

  • Kuninaga S, Natusaki T, Takeuchi T, Yokosawa R (1997) Sequence variation of the rDNA-ITS regions within and between anastomosis groups in Rhizoctonia solani. Curr Genet 32:237–243

    Article  CAS  PubMed  Google Scholar 

  • Lee FN, Rush MC (1983) Rice sheath blight: a major rice disease. Plant Dis 67:829–832

    Article  Google Scholar 

  • Liu ZL, Sinclair JB (1993) Differentiation of intraspecific groups within anastomosis group 1 of Rhizoctonia solani using ribosomal DNA internal transcribed spacer and isozyme comparisons. Can J Plant Pathol 15:272–280

    Article  CAS  Google Scholar 

  • Lubeck M, Poulsen H (2001) UP-PCR cross blot hybridization as a tool for identification of anastomosis groups in the Rhizoctonia solani complex. FEMS Microbiol Lett 201:83–89

    Article  CAS  PubMed  Google Scholar 

  • Pascual CB, Toda T, Raymondo AD, Hyakumachi M (2000) Characterization by conventional techniques and PCR of Rhizoctonia solani strains causing banded leaf sheath blight in maize. Plant Pathol 49:108–118

    Article  CAS  Google Scholar 

  • Sharon M, Kuninaga S, Hyakumachi M, Sneh B (2006) The advancing identification and classification of Rhizoctonia spp. using molecular and biotechnological methods compared with the classical anastomosis grouping. Mycoscience 47:299–316

    Article  CAS  Google Scholar 

  • Sharon M, Kuninaga S, Hyakumachi M, Naito S, Sneh B (2008) Classification of Rhizoctonia spp. Using rDNA-ITS sequence analysis supports the genetic basis of the classical anastomosis grouping. Mycoscience 49:93–114

    Article  CAS  Google Scholar 

  • Sneh B, Burpee L, Ogoshi A (1991) Identification of Rhizoctonia species. APS, St. Paul

    Google Scholar 

  • Tajick MA, Rahimianm H, Alizadeh A (2005) Studies on population of Rhizoctoniasolani AG1 IA strains from rice by rDNA RFLP in Mazandaran province. Iran J Plant Pathol 41:507–542

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Templeton AR (1998) Nested clade analysis of phylogeographic data: testing hypotheses about gene flow and population history. Mol Ecol 7:381–397

    Article  CAS  PubMed  Google Scholar 

  • Toda T, Nasu H, Kageyama K, Hyakumachi M (1998) Genetic identification of the web-blight fungus (Rhizoctonia solani AG 1) obtained from European pear using RFLP or DNA–ITS and RAPD analysis. Res Bull Fac Agr Gifu Univ 63:1–9

    CAS  Google Scholar 

  • Toda T, Hyakumachi M, Arora DK (1999) Genetic relatedness among and within different Rhizoctonia solani anastomosis groups as assessed by RAPD, ERIC and REP-PCR. Microbiol Res 154:247–258

    Article  Google Scholar 

  • Toda T, Mushika T, Hyakumachi M (2004) Development of specific PCR primers for the detection of Rhizoctonia solani AG 2–2 LP from the leaf sheaths exhibiting large-patch symptom on zoysia grass. FEMS Microbiol Lett 232:67–74

    Article  CAS  PubMed  Google Scholar 

  • Zhang KZ, Li P, Li N, Xiang XC (2006) Research progress in germplasm, heredity and breeding of resistance to rice sheath blight. Mol Plant Breeding 4:713–720

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Robert Harman II for critically reviewing this manuscript. This project was supported by National Transgenic Breeding Program of China (2012ZX08009001-002) and National Basic Research Program of China (2012CB722504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhou.

Additional information

Yong Wei and Jiandong Bao equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Neighbor-joining tree of different Rhizoctonia solani AG 1-IA isolates based on the nucleotide sequences of the rDNA ITS-5.8S. All the sequences within the same subgroup of AG1-IA collected from rice are clustered together and cannot be differentiated. The sequences described in this study were designated as either ITSa or ITSb. Other sequences were retrieved from NCBI with respective accession numbers (DOC 144 kb)

Table S1

Frequency of different SNP types in ß-actin sequence of R. solani AG1-IA strains (DOCX 12 kb)

Table S2

Groups based on the deduced amino acids and haplotypes based on SNPs in ß-actin sequence of R. solani AG1-IA strains (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Y., Bao, J., Cao, H. et al. Haplotype variation and phylogeography of Rhizoctonia solani AG1-IA strains based on rDNA5.8S-ITS and ß-actin gene sequence analyses. Mycol Progress 13, 247–255 (2014). https://doi.org/10.1007/s11557-013-0909-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-013-0909-3

Keywords

Navigation