Skip to main content

Advertisement

Log in

Spatio-temporal dynamics of endophyte diversity in the canopy of European ash (Fraxinus excelsior)

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Leaf-inhabiting endophytic fungi of Fraxinus excelsior growing in a floodplain forest were isolated during 2008 to investigate vertical community structure, species richness and seasonal variation. The analysis of 848 fungal endophytes from 213 leaves resulted in 50 different species. In the understorey, infection density and species richness were higher than in the crowns of mature trees throughout the whole vegetation period. Within tree crowns, sun-exposed leaves of the top canopy exhibited the lowest infection rates. Most species were rare or absent in spring and in the light crowns and frequent in autumn and the understorey. However, some species, especially the two most frequent, Alternaria infectoria and A. alternata, deviated from these patterns. Young leaves were nearly free of endophytes. Apparently, the subsequent infection and establishment of fungi strongly depend on microclimatic parameters and leaf characters, which create highly variable spatial and temporal colonisation patterns within an individual tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abarenkov K, Nilsson RK, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, PennanenT SR, Taylor AFS, Tedersoo L, Ursing BM, Vrålstad T, Liimatainen K, Peintner U, Kõljalg U (2010) The UNITE database for molecular identification of fungi - recent updates and future perspectives. New Phytol 186:281–285

    Article  PubMed  Google Scholar 

  • Allen E, Hoch H, Steadman J, Stavely R (1991) Influence of leaf surface features on spore deposition and the epiphytic growth of phytopathogenic fungi. In: Andrews J, Hirano S (eds) Microbial ecology of leaves. Springer, New York, pp 87–110

    Chapter  Google Scholar 

  • Andersen B, Sørensen JL, Nielsen KF, Gerrits van den Ende B, de Hoog S (2009) Apolyphasic approach to the taxonomy of the Alternaria infectoria species-group. Fungal Genet Biol 46:642–656

  • Andrews JH (2006) Population growth and the landscape ecology of microbes on leaf surfaces. In: Bailey MJ, Lilley AK, Timms-Wilson TM, Spencer-Phillips PTN (eds) Microbial ecology of aerial plant surfaces. CAB International, Wallingford, pp 239–250

    Chapter  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  • Arnold AE, Herre EA (2003) Canopy cover and leaf age affect colonization by tropical fungal endophytes: Ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 95:388–398

    Article  PubMed  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3(4):267–274

    Article  Google Scholar 

  • Aveskamp MM, Gruyter de J, Woudenberg JHC, Verkley GJM, Crous PW(2010)Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related pleosporalean genera.Stud Mycol 65:1–60

  • Bahnweg G, Heller W, Stich S, Knappe C, Betz G, Heerdt C, Kehr RD, Ernst D, Langebartels C, Nunn AJ, Rothenburger J, Schubert R, Walli P, Müller-Starck G, Werner H, Matyssek R, Sandermann H (2005) Beech leaf colonization by the endophyte Apiognomonia errabunda dramatically depends on light exposure and climatic conditions. Plant Biol 7(6):659–669

    Article  PubMed  CAS  Google Scholar 

  • Bailey MJ, Lilley AK, Timms-Wilson TM, Spencer-Phillips PTN (2006) Microbial ecology of aerial plant surfaces. CAB International, Wallingford

    Book  Google Scholar 

  • Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

    Article  PubMed  Google Scholar 

  • Chao A (1987) Estimating the population-size for capture recapture data with unequal catchability. Biometrics 43(4):783–791

    Article  PubMed  CAS  Google Scholar 

  • Chaverri P, Gazis RO (2011) Linking ex planta fungi with their endophytic stages: Perisporiopsis, a common leaf litter and soil fungus, is a frequent endophyte of Hevea spp. and other plants. Fungal Ecol 4:94–102

    Article  Google Scholar 

  • Collado J, Platas G, Paulus B, Bills GF (2007) High-throughput culturing of fungi from plant litter by a dilution-to-extinction technique. FEMS Microbiol Ecol 60:521–533

    Article  PubMed  CAS  Google Scholar 

  • Colwell R (2006) EstimateS: Statistical estimation of species richness and shared species from samples, Version 8.2. Persistent URL <purl.oclc.org/estimates>

  • Crous PW, Schubert K, Braun U, et al (2007) Opportunistic, humanpathogenic species in the Herpotrichiellaceae arephenotypically similar to saprobic or phytopathogenic species in the Venturiaceae. Stud Mycol 58:185–217

    Google Scholar 

  • Devarajan PT, Suryanarayanan TS (2006) Evidence for the role of phytophagous insects in dispersal of non-grass fungal endophytes. Fungal Divers 23:111–119

    Google Scholar 

  • Domsch KH, Gams W, Anderson TH (2007) Compendium of soil fungi, 2 edn. Academic, London

    Google Scholar 

  • Doty LS (2011) Growth-promoting endophytic fungi of forest trees. In: Pirttilä AM, Frank C (eds) Endophytes of forest trees: biology and applications. Forestry Series. Springer, Berlin, pp 151–156

    Chapter  Google Scholar 

  • Doyle JJ, Doyle JL (1987) DNA isolation from small amounts of plant tissue. Phytochemical Bull 19:11–15

    Google Scholar 

  • Ellis MB (1971) Dematiaceous hyphomycetes. Cambrian News, Aberystwyth

    Google Scholar 

  • Espinosa-Garcia F, Langenheim J (1990) The Endophytic Fungal Community In Leaves of A Coastal Redwood Population - Diversity and Spatial Patterns. New Phytol 116(1):89–97

    Article  Google Scholar 

  • Fan Y-M, Huang W-M, Li W, Zhang G-X (2009) Onychomycosis Caused by Nigrospora sphaerica in an immunocompetent man. Arch Dermatol 145:611–612

    Google Scholar 

  • Feldman T, O’Brien H, Arnold AE (2008) Moths that Vector a Plant Pathogen also Transport Endophytic Fungi and Mycoparasitic Antagonists. Microb Ecol 56:742–750

    Article  PubMed  Google Scholar 

  • Fischer MWF, Stolze-Rybczynski JL, Cui YL, Money NP (2010) How far and how fast can mushroom spores fly? Physical limits on ballistospore size and discharge distance in the Basidiomycota. Fungal Biol 114:669–675

    Article  PubMed  Google Scholar 

  • Gange AC (1996) Positive effects of endophyte infection on sycamore aphids. Oikos 75(3):500–510

    Article  Google Scholar 

  • Gilbert GS, Reynolds DR, Bethancourt A (2007) The patchiness of epifoliar fungi in tropical forests: Host range, host abundance, and environment. Ecology 88:575–581

    Article  PubMed  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4(4):379–391

    Article  Google Scholar 

  • Grünig CR, Queloz V, Sieber TN (2011) Structure of diversity in dark septate endophytes: from species to genes. In: Pirttilä AM, Frank C (eds) Endophytes of forest trees: biology and applications. Forestry Series. Springer, Berlin, pp 3–30

    Chapter  Google Scholar 

  • Halmschlager E, Butin H, Donaubauer E (1993) Endophytic fungi in leaves and twigs of Quercus petraea. Eur J For Pathol 23(1):51–63

    Article  Google Scholar 

  • Hanada RE, Pomella AWV, Costa HS, Bezerra JL, Loguercio LL, Pereira JO (2010) Endophytic fungal diversity in Theobroma cacao (cacao) and T. grandiflorum (cupuacu) trees and their potential for growth promotion and biocontrol of black-pod disease. Fungal Biol 114:901–910

    Article  PubMed  Google Scholar 

  • Hashizume Y, Fukuda K, Sahashi N (2010) Effects of summer temperature on fungal endophyte assemblages in Japanese beech (Fagus crenata) leaves in pure beech stands. Botany 88(3):266–274

    Article  CAS  Google Scholar 

  • Helander M, Wäli P, Kuuluvainen T, Saikkonen K (2006) Birch leaf endophytes in managed and natural boreal forests. Can J For Res 36(12):3239–3245

    Article  Google Scholar 

  • Helander M, Ahlholm J, Sieber TN, Hinneri S, Saikkonen K (2007) Fragmented environment affects birch leaf endophytes. New Phytol 175(3):547–553

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755

    Article  PubMed  CAS  Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Johnston PR, Sutherland PW, Joshee S (2006) Visualising endophytic fungi within leaves by detection of (1-3)-ß-D-glucans in fungal cell walls. Mycologist 20:159–162

    Article  Google Scholar 

  • Jumpponen A, Jones KL (2010) Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol 186:496–513

    Article  PubMed  CAS  Google Scholar 

  • Kowalski T, Kehr RD (1992) Endophytic fungal colonization of branch bases in several forest tree species. Sydowia 44:137–168

    Google Scholar 

  • Kumar S, Filipski A (2007) Multiple sequence alignment: In pursuit of homologous DNA positions. Genome Res 17(2):127–135

    Article  PubMed  CAS  Google Scholar 

  • Lacap DC, Hyde KD, Liew ECY (2003) An evaluation of the fungal ’morphotype’ concept based on ribosomal DNA sequences. Fungal Divers 12:53–66

    Google Scholar 

  • Lodge DJ, Fisher PJ, Sutton BC (1996) Endophytic fungi of Manilkara bidentata leaves in Puerto Rico. Mycologia 88(5):733–738

    Article  Google Scholar 

  • Lygis V, Vasiliauskas R, Larsson KH, Stenlid J (2005) Wood-inhabiting fungi in stems of Fraxinus excelsior in declining ash stands of northern Lithuania, with particular reference to Armillaria cepistipes. Scand J For Res 20(4):337–346

    Article  Google Scholar 

  • Nilsson RH, Veldre V, Hartmann M, Unterseher M, Amend A, Bergsten J, Kristiansson E, Ryberg M, Jumpponen A, Abarenkov K (2010) An open source software package for automated extraction of ITS1 and ITS2 from fungal ITS sequences for use in high-throughput community assays and molecular ecology. Fungal Ecol 3(4):284–287

    Article  Google Scholar 

  • Nylander J (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University

    Google Scholar 

  • Olbrich M, Knappe C, Wenig M, Gerstner E, Haeberle KH et al (2010) Ozone fumigation (twice ambient) reduces leaf infestation following natural and artificial inoculation by the endophytic fungus Apiognomonia errabunda of adult European beech trees. Environ Pollut 158:1043–1050

    Article  PubMed  CAS  Google Scholar 

  • Osono T (2006) Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can J Microbiol 52(8):701–716

    Article  PubMed  CAS  Google Scholar 

  • Parker GG, Brown MJ (2000) Forest canopy stratification - is it useful? Am Nat 155(4):473–484

    Article  PubMed  Google Scholar 

  • Pehl L, Butin H (1994) Endophytische Pilze in Blättern von Laubbäumen und ihre Beziehungen zu Blattgallen (Zoocecidien). Mitt Biol Bundesanst Land- Forstwirtsch 297:1–56

    Google Scholar 

  • Pereiro M Jr, Pereiro Ferreirós MM, De Hoog GS, Toribio J (2004) Cutaneous infection caused by Alternariae in patients receiving tacrolimus. Med Mycol 42:277–282

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 179–197

    Chapter  Google Scholar 

  • Promputtha I, Hyde KD, McKenzie EHC, Peberdy JF, Lumyong S (2010) Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes? Fungal Divers 41:89–99

    Article  Google Scholar 

  • Przybyl K (2002) Fungi associated with necrotic apical parts of Fraxinus excelsior shoots. For Pathol 32(6):387–394

    Article  Google Scholar 

  • Rensburg JCJ van, Lamprecht SC, Groenewald JZ, Castlebury LA, CrousPW (2006) Characterisation of Phomopsis spp. associated with die-backof rooibos (Aspalathus linearis) in South Africa. Stud Mycol 55:65–74

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez J, Elissetche JP, Valenzuela S (2011) Tree endophytes and wood biodegradation. In: Pirttilä AM, Frank C (eds) Endophytes of forest trees: biology and applications. Forestry Series, Springer, Berlin, pp 81–93

    Chapter  Google Scholar 

  • Rohrschneider M (2007) Measurement of the canopy height and visualisation of its surface structure. In: Unterseher M, Morawetz W, Klotz S, Arndt E (eds) The Canopy of a Temperate Floodplain Forest - Results from five years of research at the Leipzig Canopy Crane. University of Leipzig, pp 18–20

  • Schubert K, Ritschel A, Braun U (2003) A monograph of Fusicladium s. lat. (Hyphomycetes). Schlechtendalia 9:1–132

    Google Scholar 

  • Schubert K, Groenewald JZ, Braun U, Dijksterhuis J, Starink M, Hill CF,Zalar P, Hoog GS de, Crous PW (2007) Biodiversity in the Cladosporiumherbarum complex (Davidiellaceae, Capnodiales), with standardisation ofmethods for Cladosporium taxonomy and diagnostics. Stud Mycol58:105–156

  • Schulz B, Guske S, Dammann U, Boyle C (1998) Endophyte-host interactions. II. Defining symbiosis of the endophyte-host interaction. Symbiosis 25(1–3):213–227

    Google Scholar 

  • Seele C (2007) Tree species composition of the LAK investigation site. In: Unterseher M, Morawetz W, Klotz S, Arndt E (eds) The Canopy of a Temperate Floodplain Forest - Results from five years of research at the Leipzig Canopy Crane. University of Leipzig, pp 12–14

  • Shaw DC (2004) Vertical organization of canopy biota. In: Lowman MD, Rinker HB (eds) Forest Canopies. 2nd edition, Elsevier, pp 73–101

  • Sieber T, Hugentobler C (1987) Endophytic fungi in leaves and twigs of healthy and deseased beech trees (Fagus sylvatica L.). Eur J For Pathol 17(7):411–425

    Article  Google Scholar 

  • Simmons EG (2007) Alternaria: An Identification Manual, CBS Biodiversity Series 6. CBS, Utrecht

    Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: Maximum Likelihood-based Phylogenetic Analyses with Thousands of Taxa and Mixed Models. Bioinformatics 22(21):2688–2690

    Article  PubMed  CAS  Google Scholar 

  • Stone JK (1987) Fine-structure of latent infections by Rhabdocline parkeri on Douglas-fir, with observations on uninfected epidermal cells. Can J Bot 66(1):45–54

    Article  Google Scholar 

  • Stone JK, Sherwood MA, Carroll GC (1996) Canopy microfungi: Function and diversity. Northwest Sci 70:37–45

    Google Scholar 

  • Suryanarayanan TS, Murali TS, Thirunavukkarasu N, Rajulu MBG, Venkatesan G, Sukumar R (2011) Endophytic fungal communities in woody perennials of three tropical forest types of the Western Ghats, southern India. Biodivers Conserv 20:913–928

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Toti L, Viret O, Horat G, Petrini O (1993) Detection of the Endophyte Discula umbrinella In Buds and Twigs of Fagus-sylvatica. Eur J For Pathol 23(3):147–152

    Article  Google Scholar 

  • Ulrich W, Ollik M, Ugland KI (2010) A meta-analysis of species-abundance distributions. Oikos 119(7):1149–1155

    Article  Google Scholar 

  • Unterseher M (2011) Diversity of fungal endophytes in temperate forest trees. In: Pirttilä AM, Frank C (eds) Endophytes of forest trees: biology and applications. Forestry Series. Springer, Berlin, pp 31–46

    Chapter  Google Scholar 

  • Unterseher M, Schnittler M (2010) Species richness analysis and ITS rDNA phylogeny revealed the majority of cultivable foliar endophytes from beech (Fagus sylvatica). Fungal Ecol 3(4):366–378

    Article  Google Scholar 

  • Unterseher M, Tal O (2006) Influence of small scale conditions on the diversity of wood decay fungi in a temperate, mixed deciduous forest canopy. Mycol Res 110:169–178

    Article  PubMed  Google Scholar 

  • Unterseher M, Reiher A, Finstermeier K, Otto P, Morawetz W (2007) Species richness and distribution patterns of leaf-inhabiting endophytic fungi in a temperate forest canopy. Mycol Prog 6(3):201–212

    Article  Google Scholar 

  • Vega FE, Simpkins A, Aime MC, Posada F, Peterson SW, Rehner SA, Infante F, Castillo A, Arnold AE (2010) Fungal endophyte diversity in coffee plants from Colombia, Hawaii, Mexico and Puerto Rico. Fungal Ecol 3:122–138

    Article  Google Scholar 

  • Weber RWS, Anke H (2006) Effects of endophytes on colonisation by leaf surfacemicrobiota. In: Bailey MJ, Lilley AK, Timms-Wilson TM, Spencer-Phillips PTN (eds) Microbial Ecology of Aerial Plant Surfaces. CAB International, Wallingford, pp 209–222

    Chapter  Google Scholar 

  • White JJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols - a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Wilson D (1996) Manipulation of infection levels of horizontally transmitted fungal endophytes in the field. Mycol Res 100:827–830

    Article  Google Scholar 

  • Wilson D, Carroll GC (1994) Infection studies of Discula quercina, an endophyte of Quercus garryana. Mycologia 86:635–647

    Article  Google Scholar 

  • Wilson D, Faeth SH (2001) Do fungal endophytes result in selection for leafminer ovipositional preference? Ecology 82(4):1097–1111

    Article  Google Scholar 

  • Wilson D, Barr ME, Faeth SH (1997) Ecology and description of a new species of Ophiognomonia endophytic in the leaves of Quercus emoryi. Mycologia 89(4):537–546

    Article  Google Scholar 

  • Wirsel SGR, Runge-Frobose C, Ahren DG, Kemen E, Oliver RP,Mendgen KW (2002) Four or more species of Cladosporiumsympatrically colonize Phragmites australis. Fungal Genet Biol 35:99–113

  • Zalar P, Gostincar C, De Hoog GS, Ursic V, Sudhadham M, Gunde-Cimerman N (2008) Redefinition of Aureobasidium pullulans and itsvarieties. Stud Mycol 61:21–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Almut Scholtysik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholtysik, A., Unterseher, M., Otto, P. et al. Spatio-temporal dynamics of endophyte diversity in the canopy of European ash (Fraxinus excelsior). Mycol Progress 12, 291–304 (2013). https://doi.org/10.1007/s11557-012-0835-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-012-0835-9

Keywords

Navigation