Skip to main content

Advertisement

Log in

Normative ranges of nasal airflow variables in healthy adults

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Virtual surgery planning based on computational fluid dynamics (CFD) simulations of nasal airflow has the potential to improve surgical outcomes for patients with nasal airway obstruction (NAO). Virtual surgery planning requires normative ranges of airflow variables, but few studies to date have quantified inter-individual variability of nasal airflow among healthy subjects. This study reports CFD simulations of nasal airflow in 47 healthy adults.

Methods

Anatomically accurate three-dimensional nasal models were reconstructed from cone beam computed tomography scans and used for steady-state inspiratory airflow simulations with a bilateral flowrate of 250 ml/s. Normal subjective sensation of nasal patency was confirmed using the nasal obstruction symptom evaluation and visual analog scale. Healthy ranges for several CFD variables known to correlate with subjective nasal patency were computed, including unilateral airflow, nasal resistance, airspace minimal cross-sectional area (mCSA), heat flux (HF), and surface area stimulated by mucosal cooling (defined as the area where HF > 50 W/m2). The normative ranges were targeted to contain 95% of the healthy population and computed using a nonparametric method based on order statistics.

Results

A wide range of inter-individual variability in nasal airflow was observed among healthy subjects. Unilateral airflow varied from 60 to 191 ml/s, airflow partitioning ranged from 23.8 to 76.2%, and unilateral mCSA varied from 0.24 to 1.21 cm2. These ranges are in good agreement with rhinomanometry and acoustic rhinometry data from the literature. A key innovation of this study are the normative ranges of flow variables associated with mucosal cooling, which recent research suggests is the primary physiological mechanism of nasal airflow sensation. Unilateral HF ranged from 94 to 281 W/m2, while the surface area stimulated by cooling ranged from 27.4 to 64.3 cm2.

Conclusions

These normative ranges may serve as targets in future virtual surgery planning for patients with NAO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. This inlet boundary condition should be distinguished from a flat velocity profile imposed at the nostrils, which has been shown to yield less accurate results than a pressure boundary condition imposed at a spherical surface in front of the face [48]. Here, a pressure boundary condition (not a flat velocity profile) is applied at the nostrils. For a given mesh size, truncation of the geometry at the nostrils provides a higher mesh density inside the nasal passages, which is expected to provide greater accuracy.

References

  1. Vogt K, Jalowayski AA, Althaus W, Cao C, Han D, Hasse W, Hoffrichter H, Mosges R, Pallanch J, Shah-Hosseini K, Peksis K, Wernecke KD, Zhang L, Zaporoshenko P (2010) 4-Phase-Rhinomanometry (4PR)–basics and practice 2010. Rhinol Suppl 21:1–50

    PubMed  Google Scholar 

  2. Andre RF, Vuyk HD, Ahmed A, Graamans K, Nolst Trenite GJ (2009) Correlation between subjective and objective evaluation of the nasal airway. A systematic review of the highest level of evidence. Clin Otolaryngol 34(6):518–525. https://doi.org/10.1111/j.1749-4486.2009.02042.x

    Article  CAS  PubMed  Google Scholar 

  3. Hopkins C (2010) Re: correlation between subjective and objective evaluation of the nasal airway. Clin Otolaryngol 35(2):147–148. https://doi.org/10.1111/j.1749-4486.2010.02102.x

    Article  CAS  PubMed  Google Scholar 

  4. Eccles R, Doddi NM, Leong S (2010) Re: correlation between subjective and objective evaluation of the nasal airway. Clin Otolaryngol 35(2):149. https://doi.org/10.1111/j.1749-4486.2010.02101.x

    Article  CAS  PubMed  Google Scholar 

  5. Williams J, Kulendra K, Hanif J (2010) Re: correlation between subjective and objective evaluation of the nasal airway. Clin Otolaryngol 35(2):150–151. https://doi.org/10.1111/j.1749-4486.2010.02107.x

    Article  CAS  PubMed  Google Scholar 

  6. Barnes ML, White PS, Gardiner Q (2010) Re: correlation between subjective and objective evaluation of the nasal airway. Clin Otolaryngol 35(2):152–153. https://doi.org/10.1111/j.1749-4486.2010.02110.x

    Article  CAS  PubMed  Google Scholar 

  7. Holmstrom M (2010) The use of objective measures in selecting patients for septal surgery. Rhinology 48(4):387–393. https://doi.org/10.4193/Rhino10.072

    Article  PubMed  Google Scholar 

  8. Sozansky J, Houser SM (2014) The physiological mechanism for sensing nasal airflow: a literature review. Int Forum Allergy Rhinol 4(10):834–838. https://doi.org/10.1002/alr.21368

    Article  PubMed  Google Scholar 

  9. Bailey RS, Casey KP, Pawar SS, Garcia GJ (2017) Correlation of nasal mucosal temperature with subjective nasal patency in healthy individuals. JAMA Facial Plast Surg 19(1):46–52. https://doi.org/10.1001/jamafacial.2016.1445

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kimbell JS, Frank DO, Laud P, Garcia GJ, Rhee JS (2013) Changes in nasal airflow and heat transfer correlate with symptom improvement after surgery for nasal obstruction. J Biomech 46(15):2634–2643. https://doi.org/10.1016/j.jbiomech.2013.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sullivan CD, Garcia GJ, Frank-Ito DO, Kimbell JS, Rhee JS (2014) Perception of better nasal patency correlates with increased mucosal cooling after surgery for nasal obstruction. Otolaryngol Head Neck Surg 150(1):139–147. https://doi.org/10.1177/0194599813509776

    Article  PubMed  Google Scholar 

  12. Gaberino C, Rhee JS, Garcia GJ (2017) Estimates of nasal airflow at the nasal cycle mid-point improve the correlation between objective and subjective measures of nasal patency. Respir Physiol Neurobiol 238:23–32. https://doi.org/10.1016/j.resp.2017.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  13. Casey KP, Borojeni AA, Koenig LJ, Rhee JS, Garcia GJ (2017) Correlation between subjective nasal patency and intranasal airflow distribution. Otolaryngol Head Neck Surg 156(4):741–750. https://doi.org/10.1177/0194599816687751

    Article  PubMed  PubMed Central  Google Scholar 

  14. Radulesco T, Meister L, Bouchet G, Varoquaux A, Giordano J, Mancini J, Dessi P, Perrier P, Michel J (2019) Correlations between computational fluid dynamics and clinical evaluation of nasal airway obstruction due to septal deviation: an observational study. Clin Otolaryngol. https://doi.org/10.1111/coa.13344

    Article  PubMed  Google Scholar 

  15. Zhao K, Jiang J, Blacker K, Lyman B, Dalton P, Cowart BJ, Pribitkin EA (2014) Regional peak mucosal cooling predicts the perception of nasal patency. Laryngoscope 124(3):589–595. https://doi.org/10.1002/lary.24265

    Article  PubMed  Google Scholar 

  16. Vanhille DL, Garcia GJM, Asan O, Borojeni AAT, Frank-Ito DO, Kimbell JS, Pawar SS, Rhee JS (2018) Virtual surgery for the nasal airway: a preliminary report on decision support and technology acceptance. JAMA Facial Plast Surg 20(1):63–69. https://doi.org/10.1001/jamafacial.2017.1554

    Article  PubMed  Google Scholar 

  17. Sanmiguel-Rojas E, Burgos MA, Esteban-Ortega F (2018) Nasal surgery handled by CFD tools. Int J Numer Methods Biomed Eng 34(10):e3126. https://doi.org/10.1002/cnm.3126

    Article  Google Scholar 

  18. Doorly DJ, Taylor DJ, Schroter RC (2008) Mechanics of airflow in the human nasal airways. Respir Physiol Neurobiol 163(1–3):100–110. https://doi.org/10.1016/j.resp.2008.07.027

    Article  CAS  PubMed  Google Scholar 

  19. Kelly JT, Prasad AK, Wexler AS (2000) Detailed flow patterns in the nasal cavity. J Appl Physiol 89(1):323–337. https://doi.org/10.1152/jappl.2000.89.1.323

    Article  CAS  PubMed  Google Scholar 

  20. Kim SK, Chung SK (2004) An investigation on airflow in disordered nasal cavity and its corrected models by tomographic PIV. Meas Sci Technol 15(6):1090–1096. https://doi.org/10.1088/0957-0233/15/6/007

    Article  CAS  Google Scholar 

  21. Leong SC, Chen XB, Lee HP, Wang DY (2010) A review of the implications of computational fluid dynamic studies on nasal airflow and physiology. Rhinology 48(2):139–145. https://doi.org/10.4193/Rhin09.133

    Article  CAS  PubMed  Google Scholar 

  22. Li C, Jiang J, Dong H, Zhao K (2017) Computational modeling and validation of human nasal airflow under various breathing conditions. J Biomech 64:59–68. https://doi.org/10.1016/j.jbiomech.2017.08.031

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhao K, Jiang J (2014) What is normal nasal airflow? A computational study of 22 healthy adults. Int Forum Allergy Rhinol 4(6):435–446

    Article  Google Scholar 

  24. Ramprasad VH, Frank-Ito DO (2016) A computational analysis of nasal vestibule morphologic variabilities on nasal function. J Biomech 49(3):450–457. https://doi.org/10.1016/j.jbiomech.2016.01.009

    Article  PubMed  Google Scholar 

  25. Sanmiguel-Rojas E, Burgos MA, Del Pino C, Sevilla-Garcia MA, Esteban-Ortega F (2018) Robust nondimensional estimators to assess the nasal airflow in health and disease. Int J Numer Methods Biomed Eng. https://doi.org/10.1002/cnm.2906

    Article  Google Scholar 

  26. Liu Y, Johnson MR, Matida EA, Kherani S, Marsan J (2009) Creation of a standardized geometry of the human nasal cavity. J Appl Physiol 106(3):784–795. https://doi.org/10.1152/japplphysiol.90376.2008

    Article  CAS  PubMed  Google Scholar 

  27. Churchill SE, Shackelford LL, Georgi JN, Black MT (2004) Morphological variation and airflow dynamics in the human nose. Am J Hum Biol Off J Hum Biol Council 16(6):625–638. https://doi.org/10.1002/ajhb.20074

    Article  Google Scholar 

  28. Guilmette RA, Cheng YS, Griffith WC (1997) Characterising the variability in adult human nasal airway dimensions. Ann Occup Hyg 41:491–497

    Google Scholar 

  29. Rhee JS, Sullivan CD, Frank DO, Kimbell JS, Garcia GJ (2014) A systematic review of patient-reported nasal obstruction scores: defining normative and symptomatic ranges in surgical patients. JAMA Facial Plast Surg 16(3):219–225. https://doi.org/10.1001/jamafacial.2013.2473

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dinis PB, Haider H (2002) Septoplasty: long-term evaluation of results. Am J Otolaryngol 23(2):85–90

    Article  Google Scholar 

  31. Dommerby H, Rasmussen OR, Rosborg J (1985) Long-term results of septoplastic operations. ORL 47(3):151–157

    Article  CAS  Google Scholar 

  32. Fjermedal O, Saunte C, Pedersen S (1988) Septoplasty and/or submucous resection? 5 Years nasal septum operations. J Laryngol Otol 102(9):796–798

    Article  CAS  Google Scholar 

  33. Ho WK, Yuen AP, Tang KC, Wei WI, Lam PK (2004) Time course in the relief of nasal blockage after septal and turbinate surgery: a prospective study. Arch Otolaryngol Head Neck Surg 130(3):324–328. https://doi.org/10.1001/archotol.130.3.324

    Article  PubMed  Google Scholar 

  34. Illum P (1997) Septoplasty and compensatory inferior turbinate hypertrophy: long-term results after randomized turbinoplasty. Eur Arch Otorhinolaryngol 254(Suppl 1):S89–S92

    Article  Google Scholar 

  35. Jessen M, Ivarsson A, Malm L (1989) Nasal airway resistance and symptoms after functional septoplasty: comparison of findings at 9 months and 9 years. Clin Otolaryngol Allied Sci 14(3):231–234

    Article  CAS  Google Scholar 

  36. Burgos MA, Sanmiguel-Rojas E, Del Pino C, Sevilla-Garcia MA, Esteban-Ortega F (2017) New CFD tools to evaluate nasal airflow. Eur Arch Otorhinolaryngol 274(8):3121–3128. https://doi.org/10.1007/s00405-017-4611-y

    Article  CAS  PubMed  Google Scholar 

  37. Burgos MA, Sanmiguel-Rojas E, Singh N, Esteban-Ortega F (2018) DigBody((R)): a new 3D modeling tool for nasal virtual surgery. Comput Biol Med 98:118–125. https://doi.org/10.1016/j.compbiomed.2018.05.016

    Article  CAS  PubMed  Google Scholar 

  38. Hariri BM, Rhee JS, Garcia GJ (2015) Identifying patients who may benefit from inferior turbinate reduction using computer simulations. Laryngoscope 125(12):2635–2641. https://doi.org/10.1002/lary.25367

    Article  PubMed  PubMed Central  Google Scholar 

  39. Stewart MG, Witsell DL, Smith TL, Weaver EM, Yueh B, Hannley MT (2004) Development and validation of the nasal obstruction symptom evaluation (NOSE) scale. Otolaryngol Head Neck Surg 130(2):157–163. https://doi.org/10.1016/j.otohns.2003.09.016

    Article  PubMed  Google Scholar 

  40. Calhoun KH, Waggenspack GA, Simpson CB, Hokanson JA, Bailey BJ (1991) CT evaluation of the paranasal sinuses in symptomatic and asymptomatic populations. Otolaryngol Head Neck Surg 104(4):480–483. https://doi.org/10.1177/019459989110400409

    Article  CAS  PubMed  Google Scholar 

  41. Jones NS, Strobl A, Holland I (1997) A study of the CT findings in 100 patients with rhinosinusitis and 100 controls. Clin Otolaryngol Allied Sci 22(1):47–51

    Article  CAS  Google Scholar 

  42. Min YG, Jung HW, Kim CS (1995) Prevalence study of nasal septal deformities in Korea: results of a nation-wide survey. Rhinology 33(2):61–65

    CAS  PubMed  Google Scholar 

  43. Roblin DG, Eccles R (2002) What, if any, Is the value of septal surgery? Clin Otolaryngol Allied Sci 27(2):77–80

    Article  CAS  Google Scholar 

  44. Vainio-Mattila J (1974) Correlations of nasal symptoms and signs in random sampling study. Acta Otolaryngol Suppl 318:1–48

    Article  CAS  Google Scholar 

  45. Stewart MG, Smith TL, Weaver EM, Witsell DL, Yueh B, Hannley MT, Johnson JT (2004) Outcomes after nasal septoplasty: results from the nasal obstruction septoplasty effectiveness (NOSE) study. Otolaryngol Head Neck Surg 130(3):283–290. https://doi.org/10.1016/j.otohns.2003.12.004

    Article  PubMed  Google Scholar 

  46. Borojeni AA, Frank-Ito DO, Kimbell JS, Rhee JS, Garcia GJM (2017) Creation of an idealized nasopharynx geometry for accurate computational fluid dynamics simulations of nasal airflow in patient-specific models lacking the nasopharynx anatomy. Int J Numer Methods Biol 33(5):e2825. https://doi.org/10.1002/cnm.2825

    Article  Google Scholar 

  47. Garcia GJ, Bailie N, Martins DA, Kimbell JS (2007) Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity. J Appl Physiol 103(3):1082–1092. https://doi.org/10.1152/japplphysiol.01118.2006

    Article  PubMed  Google Scholar 

  48. Taylor DJ, Doorly DJ, Schroter RC (2010) Inflow boundary profile prescription for numerical simulation of nasal airflow. J R Soc Interface 7(44):515–527. https://doi.org/10.1098/rsif.2009.0306

    Article  CAS  PubMed  Google Scholar 

  49. Lindemann J, Leiacker R, Rettinger G, Keck T (2002) Nasal mucosal temperature during respiration. Clin Otolaryngol Allied Sci 27(3):135–139

    Article  CAS  Google Scholar 

  50. Garcia GJ, Schroeter JD, Segal RA, Stanek J, Foureman GL, Kimbell JS (2009) Dosimetry of nasal uptake of water-soluble and reactive gases: a first study of interhuman variability. Inhal Toxicol 21(7):607–618. https://doi.org/10.1080/08958370802320186

    Article  CAS  PubMed  Google Scholar 

  51. Garcia GJ, Hariri BM, Patel RG, Rhee JS (2016) The relationship between nasal resistance to airflow and the airspace minimal cross-sectional area. J Biomech 49(9):1670–1678. https://doi.org/10.1016/j.jbiomech.2016.03.051

    Article  PubMed  PubMed Central  Google Scholar 

  52. Troendle JF, Yu KF (2003) Estimation of sample size for reference interval studies. Biom J 45(5):561–572

    Article  Google Scholar 

  53. Chandra RK, Patadia MO, Raviv J (2009) Diagnosis of nasal airway obstruction. Otolaryngol Clin North Am 42(2):207–225. https://doi.org/10.1016/j.otc.2009.01.004

    Article  PubMed  Google Scholar 

  54. Merkle J, Kohlhas L, Zadoyan G, Mosges R, Hellmich M (2014) Rhinomanometric reference intervals for normal total nasal airflow resistance. Rhinology 52(4):292–299. https://doi.org/10.4193/Rhin13.220

    Article  CAS  PubMed  Google Scholar 

  55. Corey JP, Gungor A, Nelson R, Liu X, Fredberg J (1998) Normative standards for nasal cross-sectional areas by race as measured by acoustic rhinometry. Otolaryngol Head Neck Surg 119(4):389–393. https://doi.org/10.1016/S0194-5998(98)70085-3

    Article  CAS  PubMed  Google Scholar 

  56. Burrow A, Eccles R, Jones AS (1983) The effects of camphor, eucalyptus and menthol vapour on nasal resistance to airflow and nasal sensation. Acta Otolaryngol 96(1–2):157–161. https://doi.org/10.3109/00016488309132886

    Article  CAS  PubMed  Google Scholar 

  57. Zhao K, Blacker K, Luo Y, Bryant B, Jiang J (2011) Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance. PLoS ONE 6(10):e24618. https://doi.org/10.1371/journal.pone.0024618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lenders H, Pirsig W (1990) Diagnostic value of acoustic rhinometry: patients with allergic and vasomotor rhinitis compared with normal controls. Rhinology 28(1):5–16

    CAS  PubMed  Google Scholar 

  59. Roblin DG, Eccles R (2003) Normal range for nasal partitioning of airflow determined by nasal spirometry in 100 healthy subjects. Am J Rhinol 17(4):179–183

    Article  Google Scholar 

  60. Eccles R (2000) Nasal airflow in health and disease. Acta Otolaryngol 120(5):580–595

    Article  CAS  Google Scholar 

  61. Hasegawa M, Kern EB (1978) Variations in nasal resistance in man: a rhinomanometric study of the nasal cycle in 50 human subjects. Rhinology 16(1):19–29

    CAS  PubMed  Google Scholar 

  62. Dayal A, Rhee JS, Garcia GJ (2016) Impact of middle versus inferior total turbinectomy on nasal aerodynamics. Otolaryngol Head Neck Surg. https://doi.org/10.1177/0194599816644915

    Article  PubMed  PubMed Central  Google Scholar 

  63. Moore EJ, Kern EB (2001) Atrophic rhinitis: a review of 242 cases. Am J Rhinol 15(6):355–361

    Article  CAS  Google Scholar 

  64. Cherobin GB, Voegels RL, Gebrim E, Garcia GJM (2018) Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold. PLoS ONE 13(11):e0207178. https://doi.org/10.1371/journal.pone.0207178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Quadrio M, Pipolo C, Corti S, Messina F, Pesci C, Saibene AM, Zampini S, Felisati G (2016) Effects of CT resolution and radiodensity threshold on the CFD evaluation of nasal airflow. Med Biol Eng Comput 54(2–3):411–419. https://doi.org/10.1007/s11517-015-1325-4

    Article  PubMed  Google Scholar 

  66. Moore M, Eccles R (2012) Normal nasal patency: problems in obtaining standard reference values for the surgeon. J Laryngol Otol 126(6):563–569. https://doi.org/10.1017/S002221511200045X

    Article  CAS  PubMed  Google Scholar 

  67. Patel RG, Garcia GJ, Frank-Ito DO, Kimbell JS, Rhee JS (2015) Simulating the nasal cycle with computational fluid dynamics. Otolaryngol Head Neck Surg 152(2):353–360. https://doi.org/10.1177/0194599814559385

    Article  PubMed  Google Scholar 

  68. Flanagan P, Eccles R (1997) Spontaneous changes of unilateral nasal airflow in man. A re-examination of the ‘nasal cycle’. Acta Otolaryngol 117(4):590–595

    Article  CAS  Google Scholar 

  69. Haight JS, Cole P (1983) The site and function of the nasal valve. Laryngoscope 93(1):49–55

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by Grant R01EB009557 from the National Institutes of Health/National Institute of Biomedical Imaging and Bioengineering to the Medical College of Wisconsin (MCW) and by subcontract from MCW to the University of North Carolina at Chapel Hill, Duke University, and Marquette University School of Dentistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme J. M. Garcia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures were performed in accordance with the ethical standards of the institutional review boards at The Medical College of Wisconsin and Marquette University and of the 1964 Helsinki declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2612 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borojeni, A.A.T., Garcia, G.J.M., Moghaddam, M.G. et al. Normative ranges of nasal airflow variables in healthy adults. Int J CARS 15, 87–98 (2020). https://doi.org/10.1007/s11548-019-02023-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-019-02023-y

Keywords

Navigation