Skip to main content

Advertisement

Log in

Automated vertebrae localization and identification by decision forests and image-based refinement on real-world CT data

  • Computer Application
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

Development of a fully automatic algorithm for the automatic localization and identification of vertebral bodies in computed tomography (CT).

Materials and methods

This algorithm was developed using a dataset based on real-world data of 232 thoraco-abdominopelvic CT scans retrospectively collected. In order to achieve an accurate solution, a two-stage automated method was developed: decision forests for a rough prediction of vertebral bodies position, and morphological image processing techniques to refine the previous detection by locating the position of the spinal canal.

Results

The mean distance error between the predicted vertebrae centroid position and truth was 13.7 mm. The identification rate was 79.6% on the thoracic region and of 74.8% on the lumbar segment.

Conclusion

The algorithm provides a new method to detect and identify vertebral bodies from arbitrary field-of-view body CT scans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zukić D, Vlasak´ A, Dukatz T, Egger J, Horinek D, Nimsky C, et al (2012). Segmentation of vertebral bodies in MR images. In: Goesele M, Grosch T, Preim B, Theisel H, Toennies K (eds) Proceeding of 17th international workshop on VMV, pp 135–142. https://doi.org/10.2312/pe/vmv/vmv12/135-142

  2. Egger J, Kapur T, Dukatz T, Kolodziej M, Zukić D, Freisleben B et al (2012) Square-cut: a segmentation algorithm on the basis of a rectangle shape. PLoS ONE 7(2):e31064. https://doi.org/10.1371/journal.pone.0031064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ayed IB, Punithakumar K, Minhas R, Joshi R, Garvin GJ (2012) Vertebral body segmentation in MRI via convex relaxation and distribution matching. In: Proceedings of medical image computing and computer-assisted intervention—MICCAI 2012, pp 520–527. https://doi.org/10.1007/978-3-642-33415-3_64

    Chapter  Google Scholar 

  4. Herring J, Dawant B (2001) Automatic lumbar vertebral identification using surface-based registration. J Biomed Inform 34(2):74–84. https://doi.org/10.1006/jbin.2001.1003

    Article  CAS  PubMed  Google Scholar 

  5. Ma J, Lu L (2013) Hierarchical segmentation and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine deformable model. Comput Vis Image Underst 117(9):1072–1083. https://doi.org/10.1016/j.cviu.2012.11.016

    Article  Google Scholar 

  6. Chu C, Belavý D, Armbrecht G, Bansmann M, Felsenberg D, Zheng G (2015) Fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images via a learning-based method. PLoS ONE 10(11):e0143327. https://doi.org/10.1371/journal.pone.0143327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chwialkowski M, Shile P, Pfeifer D, Parkey R, Peshock R (1991) Automated localization and identification of lower spinal anatomy in magnetic resonance images. Comput Biomed Res 24(2):99–117. https://doi.org/10.1016/0010-4809(91)90023-P

    Article  CAS  PubMed  Google Scholar 

  8. Klinder T, Ostermann J, Ehm M, Franz A, Kneser R, Lorenz C (2009) Automated model-based vertebra detection, identification, and segmentation in CT images. Med Image Anal 13(3):471–482. https://doi.org/10.1016/j.media.2009.02.004

    Article  PubMed  Google Scholar 

  9. Schmidt S, Kappes J, Bergtholdt M, Pekar V, Dries S, Bystrov D, Schnörr C (2007) Spine detection and labeling using a parts-based graphical model. IPMI 4584:122–133. https://doi.org/10.1007/978-3-540-73273-0_11

    Article  Google Scholar 

  10. Glocker B, Feulner J, Criminisi A, Haynor D, Konukoglu E (2012) Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans. In: Medical image computing and computer-assisted intervention—MICCAI 2012, pp 590–598. https://doi.org/10.1007/978-3-642-33454-2_73

    Chapter  Google Scholar 

  11. Glocker B, Zikic D, Konukoglu E, Haynor D, Criminisi A (2013) Vertebrae localization in pathological spine CT via dense classification from sparse annotations. In: Medical image computing and computer-assisted intervention—MICCAI 2013, pp 262–270. https://doi.org/10.1007/978-3-642-40763-5_33

    Chapter  Google Scholar 

  12. Suzani A, Seitel A, Liu Y, Fels S, Rohling R, Abolmaesumi P (2015) Fast automatic vertebrae detection and localization in pathological CT scans—a deep learning approach. In: Lecture notes in computer science, pp 678–686. https://doi.org/10.1007/978-3-319-24574-4_81

    Google Scholar 

  13. Chen H, Shen C, Qin J, Ni D, Shi L, Cheng J et al. (2015) Automatic localization and identification of vertebrae in spine CT via a joint learning model with deep neural networks. In: Lecture notes in computer science, pp 515–522. https://doi.org/10.1007/978-3-319-24553-9_63

    Google Scholar 

  14. Yang D, Xiong T, Xu D, Zhou SK, Xu Z, Chen M, Park J, Grbic S, Tran TD, Chin SP, Metaxas D (2017) Deep image-to-image recurrent network with shape basis learning for automatic vertebra labeling in large-scale 3D CT volumes. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 498–506. https://doi.org/10.1007/978-3-319-66179-7_57

    Chapter  Google Scholar 

  15. Liao H, Mesfin A, Luo J (2018) Joint vetebrae identification and localization in spinal CT images by combining short- and long-range contextual information. IEEE Trans Med Imaging 37(5):1266–1275. https://doi.org/10.1109/TMI.2018.2798293

    Article  PubMed  Google Scholar 

  16. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  17. Viola P, Jones M (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154. https://doi.org/10.1023/B:VISI.0000013087.49260.fb

    Article  Google Scholar 

Download references

Funding

Funding was provided by Asociación para la Investigación y el Desarrollo en Resonancia Magnética – ADIRM, Ministry of Economy, Industry and Competitiveness (Grant No. DPI2014-53401-C2-2-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Jimenez-Pastor.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jimenez-Pastor, A., Alberich-Bayarri, A., Fos-Guarinos, B. et al. Automated vertebrae localization and identification by decision forests and image-based refinement on real-world CT data. Radiol med 125, 48–56 (2020). https://doi.org/10.1007/s11547-019-01079-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-019-01079-9

Keywords

Navigation