Skip to main content
Log in

Multislice CT in congenital bronchopulmonary malformations in children

La TC multistrato nello studio delle malformazioni congenite broncopolmonari in età pediatrica

  • Paediatric Radiology / Radiologia Pediatrica
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Congenital bronchopulmonary malformations encompass a wide spectrum of pathologies involving the lungs, trachea and bronchi, pulmonary vessels, and oesophagus. These developmental lesions are often isolated, but the association of two or more anomalies is not infrequent. Contrast-enhanced multidetector computed tomography (MDCT), thanks to multiplanar and 3D reconstructions, allows for detailed studies of these malformations, achieving better accuracy compared with conventional techniques such as chest X-ray, fluoroscopy, ventilation and perfusion scintigraphy and ultrasonography. MDCT is characterised by fast data acquisition and does not require sedation in the majority of cases. The main drawbacks of MDCT are the use of ionising radiation and — in many cases —contrast media. Recently, improved CT scanners and optimised CT protocols have made available to children all the benefits of MDCT, thanks to a significant reduction in radiation dose and an improved risk-benefit ratio. The aim of our paper was to evaluate MDCT in children with bronchopulmonary malformations by reporting our experience (about 2,400 studies in 30 months with a 64-slice MDCT scanner) and comparing it with the available literature.

Riassunto

Le malformazioni congenite broncopolmonari rappresentano un ampio spettro di patologie che interessano il parenchima polmonare, il sistema vascolare, le vie aeree centrali e l’esofago. I pazienti affetti presentano quadri malformativi semplici o complessi, rispettivamente caratterizzati da una o più anomalie associate. La tomografia computerizzata (TC) volumetrica multidettetore (MDCT) con mezzo di contrasto permette di analizzare dettagliatamente le strutture toraciche coinvolte nelle malformazioni, con ricostruzioni multiplanari e 3D, con un’accuratezza superiore ad altre indagini tradizionalmente utilizzate tra cui il radiogramma toracico, gli studi fluoroscopici, l’ecografia e la scintigrafia ventilatoria perfusionale. Inoltre la rapidità di acquisizione dei dati consente di evitare nella maggior parte dei casi la sedazione del bambino. Lo svantaggio è rappresentato dall’utilizzo di radiazioni ionizzanti e dalla necessità di somministrare mezzo di contrasto per via endovenosa. Recentemente l’evoluzione tecnologica degli scanner TC e la definizione di protocolli pediatrici dedicati ha permesso una significativa riduzione della dose assorbita, pertanto oggi è possibile usufruire delle potenzialità della MDCT nello studio del torace del bambino con un rapporto rischio-beneficio ragionevolmente vantaggioso. Il nostro articolo si propone di valutare i differenti aspetti dell’impiego della TC sul bambino analizzando la letteratura e confrontandola con l’esperienza personale, unica in Italia: circa 2400 TC del torace in 30 mesi in pazienti compresi tra 1 giorno e 16 anni con un apparecchio a 64 strati.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References/Bibliografia

  1. Rydberg J, Buckwalter KA, Caldemeyer KS et al (2000) CT scanning techniques and clinical applications. Radiographics 20:1787–1806

    CAS  PubMed  Google Scholar 

  2. Slovis TL (2000) New horizons in pediatric radiology. Radiology 216:317–320

    CAS  PubMed  Google Scholar 

  3. Brenner D, Elliston C, Hall E, Berdon W (2001) Estimates risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 176:289–296

    CAS  PubMed  Google Scholar 

  4. Paterson A, Frush DP, Donnelly LF et al (2001) Helical CT of the body: are settings adjusted for pediatric patients? AJR Am J Roentgenol 176:297–301

    CAS  PubMed  Google Scholar 

  5. Donnelly LF, Emery KH, Brody AS et al (2001) Minimizing radiation dose for pediatric body applications of single-detector helical CT: strategies at a large Children’s Hospital. AJR Am J Roentgenol 176:303–306

    CAS  PubMed  Google Scholar 

  6. FDA (2002) FDA public health notification: reducing radiation risk from computed tomography for pediatric and small adult patients. Pediatr Radiol 32:314–316

    Article  Google Scholar 

  7. Tomà P (2003) Rischio da irradiazione nel bambino: che cosa dobbiamo sapere. Radiol Med 105:83–91

    PubMed  Google Scholar 

  8. Frush DP (2002) Strategies of dose reduction. Pediatr Radiol 32:293–297

    Article  PubMed  Google Scholar 

  9. Moore WH, Bonvento M, Olivieri-Fitt R (2006) Comparison of MDCT radiation dose: a phantom study. AJR Am J Roentgenol 187:W498–W502

    Article  PubMed  Google Scholar 

  10. Brisse H (2006) Guide des procedures radiologiques SFR/INRS. Scanographie Pédiatrique. http://www.sfipradiopediatrie.org. Last access 09/07/2010

  11. Papaioannou G, Young C, Owens CM (2007) Multidetector row CT for imaging the paediatric tracheobronchial tree. Pediatr Radiol 37:515–529

    Article  PubMed  Google Scholar 

  12. Goske MJ, Applegate KE, Boylan J et al (2008) The ‘Image Gently’ campaign: increasing CT radiation dose awareness through a national education and awareness program. Pediatr Radiol 38:265–269

    Article  PubMed  Google Scholar 

  13. Boone JM (2006) Multidetector CT: opportunities, challenges, and concerns associated with scanners with 64 or more detector rows. Radiology 241:334–337

    Article  PubMed  Google Scholar 

  14. Siegel MJ (2003) Multiplanar and three-dimensional multi-detector row CT of thoracic vessels and airways in the pediatric population. Radiology 229:641–650

    Article  PubMed  Google Scholar 

  15. García-Peña P, Owens CM (2008) Helical multidetector chest CT. In: Lucaya J, Strife JL (eds) Pediatric Chest Imaging. Springer, Berlin Heidelberg New York, pp 47–77

    Chapter  Google Scholar 

  16. Sena L, Krishnamurthy R, Chung T (2008) Pediatric cardiac CT. In: Lucaya J, Strife JL (eds) Pediatric Chest Imaging. Springer, Berlin Heidelberg New York, pp 361–398

    Chapter  Google Scholar 

  17. ESUR NSF Guidelines (2007) http://www.esur.org/Nephrogenic_Fibrosis.39.0.html. Last access 09/07/2010

  18. Slovis TL (2003) Children, computed tomography radiation dose, and the as low as reasonably achievable (ALARA) concept. Pediatrics 33:971–972

    Article  Google Scholar 

  19. Kaste SC, Young CW (1995) Safe use of power injectors with central and peripheral venous access devices for pediatric CT. Pediatr Radiol 26:499–501

    Article  Google Scholar 

  20. Ramachandran N, Owens CM (2008) Imaging of the airways with multidetector row computed tomography. Paediatr Respir Rev 9:69–76

    Article  PubMed  Google Scholar 

  21. Paul JF, Abada HT (2007) Strategies for reduction of radiation dose in cardiac multislice CT. Eur Radiol 17:2028–2037

    Article  PubMed  Google Scholar 

  22. Huda W, Scalzetti EM, Levin G (2000) Technique factors and image quality as functions of patient weight at abdominal CT. Radiology 217:430–435

    CAS  PubMed  Google Scholar 

  23. Siegel MJ, Schmidt B, Bradley D et al (2004) Radiation dose and image quality in pediatric CT: effect of technical factors and phantom size and shape. Radiology 233:515–522

    Article  PubMed  Google Scholar 

  24. Herzog C, Mulvihill DM, Nguyen SA et al (2008) Pediatric cardiovascular CT angiography: radiation dose reduction using automatic anatomic tube current modulation. AJR Am J Roentgenol 190:1232–1240

    Article  PubMed  Google Scholar 

  25. Sigal-Cinqualbre AB, Hennequin R, Abada HT et al (2004) Low-kilovoltage multi-detector row chest CT in adults: feasibility and effect on image quality and iodine dose. Radiology 231:169–174

    Article  PubMed  Google Scholar 

  26. Brody AS, Frush DP, Huda W et al (2007) American Academy of Pediatrics Section on Radiology. Radiation risk to children from computed tomography. Pediatrics 120:677–682

    Article  PubMed  Google Scholar 

  27. Shrimpton PC, Hillier MC, Lewis MA et al (2005) Doses from computed tomography examinations in the UK: 2003 review. NRPB — W67, NRPB Publications. Available at http://www.hpa.org.uk/radiation/publications/index.html. Last access 09/07/2010

  28. Thomas KE, Wang B (2008) Agespecific effective doses for pediatric MSCT examinations at a large children’s hospital using DLP conversion coefficients: a simple estimation method. Pediatr Radiol 38:645–656

    Article  PubMed  Google Scholar 

  29. Schertler T, Wildermuth S, Teodorovic N et al (2007) Visualization of congenital thoracic vascular anomalies using multi-detector row computed tomography and two- and three-dimensional post-processing. Eur J Radiol 61:97–119

    Article  PubMed  Google Scholar 

  30. Panicek DM, Heitzman ER, Randall PA et al (1987) The continuum of pulmonary developmental anomalies. Radiographics 7:747–772

    CAS  PubMed  Google Scholar 

  31. Lee ML, Tsao LY, Chaou WT et al (2002) Revisit on congenital bronchopulmonary vascular malformations: a haphazard branching theory of malinosculations and its clinical classification and implication. Pediatr Pulmonol 33:1–11

    Article  CAS  PubMed  Google Scholar 

  32. Newman B (2006) Congenital bronchopulmonary foregut malformations: concepts and controversies. Pediatr Radiol 36:773–791

    Article  PubMed  Google Scholar 

  33. Bush A (2001) Congenital lung disease: a plea for clear thinking and clear nomenclature. Pediatr Pulmonol 32:328–337

    Article  CAS  PubMed  Google Scholar 

  34. Yedururi S, Guillerman RP, Chung T et al (2008) Multimodality imaging of tracheobronchial disorders in children. Radiographics 28:e29 DOI 10.1148/rg.e29

    Article  PubMed  Google Scholar 

  35. Berdon WE (2000) Ring, sling, and other things: vascular compression of the infant trachea updated from the mid century to the millennium—the legacy of Robert E. Gross, MD, and Edward B. D. Neuchauser, MD. Radiology 216:624–632

    CAS  PubMed  Google Scholar 

  36. Lee EY, Boiselle PM, Cleveland RH (2008) Multidetector CT evaluation of congenital lung anomalies. Radiology 247:632–648

    Article  PubMed  Google Scholar 

  37. Doolittle AM, Mair EA (2002) Tracheal bronchus: Classification, endoscopic analysis, and airway management. Otolaryngol Head Neck Surg 126:240–243

    Article  PubMed  Google Scholar 

  38. Panigada S, Sacco O, Girosi D et al (2009) Recurrent severe lower respiratory tract infections in a child with abnormal tracheal morphology. Pediatr Pulmonol 44:192–194

    Article  PubMed  Google Scholar 

  39. Beigelman C, Howarth NR, Chartrand-Lefebvre C et al (1998) Congenital anomalies of tracheobronchial branching patterns: spiral CT aspects in adults. Eur Radiol 8:79–85

    Article  CAS  PubMed  Google Scholar 

  40. Cardinale L, Ardissone F, Cataldi A et al (2008) Bronchogenic cysts in the adult: diagnostic criteria derived from the correct use of standard radiography and computed tomography. Radiol Med 113:385–394

    Article  CAS  PubMed  Google Scholar 

  41. Berrocal T, Madrid C, Novo S et al (2004) Congenital anomalies of the tracheobronchial tree, lung, and mediastinum: embryology, radiology, and pathology. Radiographics 24:e17 DOI 10.1148/rg.e17

    Article  PubMed  Google Scholar 

  42. Currarino G, Williams B (1985) Causes of congenital unilateral pulmonary hypoplasia: a study of 33 cases. Pediatr Radiol 15:15–24

    Article  CAS  PubMed  Google Scholar 

  43. Ellis K (1991) Developmental abnormalities in the systemic blood supply to the lungs. AJR Am J Roentgenol 156:669–679

    CAS  PubMed  Google Scholar 

  44. Beerman LB, Oh KS, Park SC (1983) Unilateral pulmonary vein atresia: clinical and radiographic spectrum. Pediatr Cardiol 4:105–112

    Article  CAS  PubMed  Google Scholar 

  45. Stocker JT, Madewell JE, Drake RM (1977) Congenital cystic adenomatoid malformation of the lung. Hum Pathol 8:155–171

    Article  CAS  PubMed  Google Scholar 

  46. MacSweeney F, Papagiannopoulos K, Goldstraw P (2003) An assessment of the expanded classification of congenital cystic adenomatoid malformations and their relationship to malignant transformation. Am J Surg Pathol 27:1139–1146

    Article  PubMed  Google Scholar 

  47. Laberge CJM, Bratu I, Flageole H (2004) The management of asymptomatic congenital lung malformations. Paediatr Respir Rev 5:S305–S312

    Article  PubMed  Google Scholar 

  48. Orazi C, Inserra A, Schingo PM et al (2007) Pleuropulmonary blastoma, a distinctive neoplasm of childhood: report of three cases. Pediatr Radiol 37:337–344

    Article  PubMed  Google Scholar 

  49. Granata C, Gambini C, Balducci T et al (1998) Bronchioloalveolar carcinoma arising in congenital cystic adenomatoid malformation in a child: a case report and review on malignancies originating in congenital cystic adenomatoid malformation. Pediatr Pulmonol 25:62–66

    Article  CAS  PubMed  Google Scholar 

  50. Lanza C, Bolli V, Galeazzi V et al (2007) Cystic adenomatoid malformation in children: CT histopathological correlation. Radiol Med 112:612–619

    Article  CAS  PubMed  Google Scholar 

  51. Stocker JT, Malczak HT (1984) A study of pulmonary ligament arteries. Relationship to intralobar pulmonary sequestration. Chest 86:611–615

    CAS  Google Scholar 

  52. Cleveland RH, Weber B (1993) Retained fetal lung liquid in congenital lobar emphysema: a possible predictor of polyalveolar lobe. Pediatr Radiol 23:291–295

    Article  CAS  PubMed  Google Scholar 

  53. Gardella C, Tomà P, Sacco O et al (2009) Intermittent gaseous bowel distention: atypical sign of congenital tracheoesophageal fistula. Pediatr Pulmonol 44:244–248

    Article  PubMed  Google Scholar 

  54. Oddone M, Granata C, Vercellino N et al (2005) Multi-modality evaluation of the abnormalities of the aortic arches in children: techniques and imaging spectrum with emphasis on MRI. Pediatr Radiol 35:947–960

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Granata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomà, P., Rizzo, F., Stagnaro, N. et al. Multislice CT in congenital bronchopulmonary malformations in children. Radiol med 116, 133–151 (2011). https://doi.org/10.1007/s11547-010-0582-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-010-0582-4

Keywords

Parole chiave

Navigation