Skip to main content
Log in

Choice strategy of different dose-saving protocols in 64-slice MDCT coronary angiography

Strategia di applicazione dei differenti protocolli di risparmio di dose in angiografia coronarica mediante TCMS a 64 strati

  • Cardiac Radiology/Cardioradiologia
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

Multidetector-row computed tomography coronary angiography (MDCT-CA) produces high-level radiation dose because of submillimetre slice thickness and short scan time. As a result, manufacturers have produced different dose-saving protocols that may, however, reduce image quality and thus diagnostic accuracy. The aim of our study was to assess the diagnostic quality of MDCT-CA using different dose-saving protocols.

Materials and methods

Between April and August 2008, we examined 65 patients with 64-slice MDCT-CA: 6/65 using the step-and-shoot dose-saving protocol, 45/65 the cardiac dose right protocol and 14/65 using a standard protocol. Image quality was evaluated on a per-patient and per-segment basis, and the effective dose of each protocol was recorded.

Results

In the per-patient analysis, image quality was excellent in 100% of the step-and-shoot protocols, in 91.1% of the cardiac dose right protocols and in 85.8% of the standard protocols. Effective dose to the patient considering the whole study (i.e. scout, calcium score, triggering and MDCT-CA) was 20.49 mSv in the standard protocol, 14.8 mSv in the cardiac dose right protocol and 6.63 mSv in the step-and-shoot protocol.

Conclusions

The radiologist should apply the appropriate protocol in relation to the clinical indications, type of patient and information required in order to spare as much dose as possible while maintaining high image quality.

Riassunto

Introduzione

L’angiografia coronarica con tomografia computerizzata multistrato (AC-TCMS) comporta una dose elevata a causa di spessori submillimetrici e ridotti tempi di acquisizione; le case costruttrici quindi hanno prodotto protocolli di risparmio di dose che però possono ridurre la qualità delle immagini e l’accuratezza diagnostica. Lo scopo di questo lavoro è valutare la qualità diagnostica nello studio delle arterie coronarie con i differenti protocolli di risparmio di dose.

Materiali e metodi

Tra aprile e agosto 2008, 65 pazienti sono stati sottoposti ad AC-TCMS a 64 detettori; 6/65 mediante protocollo step and shoot, 45/65 con protocollo cardiac dose right, 14/65 con protocollo standard. È stata valutata la qualità delle immagini con analisi per paziente e per segmento ed è stata calcolata la dose effettiva per ciascun protocollo di acquisizione.

Risultati

Nelle analisi per paziente la qualità delle immagini è risultata ottimale nel 100% dei casi per il protocollo step and shoot, nel 91,1% dei casi per il protocollo cardiac dose right e nell’85,8% dei casi per il protocollo standard. La dose effettiva al paziente dell’intero esame (calcium score e AC-TCMS) è risultata pari a 20,49 mSv nel protocollo standard, 14,8 mSv nel protocollo cardiac dose right e 6,63 mSv per il protocollo step and shoot.

Conclusioni

Il radiologo deve utilizzare il protocollo di scansione più adatto a seconda dell’indicazione clinica, del paziente e del tipo di informazioni necessarie per l’iter diagnostico.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References/Bibliografia

  1. Cademartiri F, Luccichenti G, Marano R et al (2003) Angiografia coronarica non invasiva con Tomografia Computerizzata spirale multistrato. Stato dell’arte e prospettive future. Radiol Med 106:284–296

    CAS  PubMed  Google Scholar 

  2. Cademartiri F, Runza G, Belgrano M et al (2005) Introduzione all’imaging coronarico con tecnologia TC a 64 strati. Radiol Med 110:16–41

    PubMed  Google Scholar 

  3. Nieman K. Cademartiri F, Lemos PA et al (2002) Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 106:2051–2054

    Article  PubMed  Google Scholar 

  4. Nieman K, Oudkerk M, Rensing BJ et al (2001) Coronary angiography with multislice computed tomography. Lancet 357:599–603

    Article  CAS  PubMed  Google Scholar 

  5. Cademartiri F, Romano M, Seitun S et al (2008) Prevalence and characteristics of coronary artery disease in a population with suspected ischemic heart disease using CT coronary angiography: correlations with cardiovascular risk factors and clinical presentation. Radiol Med 113:363–372

    Article  CAS  PubMed  Google Scholar 

  6. Hunold P, Vogt FM, Schmermund A et al (2003) Radiation exposure during cardiac CT: effective doses at multi-detector row CT and electron-beam CT. Radiology 226:145–152

    Article  PubMed  Google Scholar 

  7. Paul J, Abada H (2007) Strategies for reduction of radiation dose in cardiac multislice CT. Eur Radiol 17:2028–2037

    Article  PubMed  Google Scholar 

  8. McColloug CH, Bruesewitz MR, Kofler JM. (2006) CT dose reduction and dose management tools: overview of available options. RadioGraphics 26:503–512

    Article  Google Scholar 

  9. Morin RL, Gerber TC, McCollough CH (2003) Radiation dose in computed tomography of the heart. Circulation 107:917–922

    Article  PubMed  Google Scholar 

  10. Achenbach S, Ulzheimer S, Baum U et al (2000) Noninvasive coronary angiography by retrospectively ECG-gated multislice spiral CT. Circulation 102:2823–2828

    CAS  PubMed  Google Scholar 

  11. Cademartiri F, Runza G, Mollet NR et al (2005) Influenza di attenuazione vascolare, frequenza cardiaca e calcium score sull’accuratezza diagnostica in angiografia coronarica non invasiva mediante tomografia computerizzata multistrato. Radiol Med 110:42–51

    PubMed  Google Scholar 

  12. Gerber T, Stratmann B, Kuzo R et al (2005) Effect of acquisition technique on radiation dose and image quality in multidetector row computed tomography coronary angiography with submillimeter collimation. Invest Radiol 40:556–563

    Article  PubMed  Google Scholar 

  13. Horiguchi J, Kiguchi M, Fujioka C et al (2008) Radiation dose, image quality, stenosis measurement, and CT densitometry using ECG-triggered coronary 64-MDCT Angiography: a phantom study. AJR Am J Roentgenol 190:315–320

    Article  PubMed  Google Scholar 

  14. Husmann L, Valenta I, Gaemperli O et al (2008) Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J 29:191–197

    Article  PubMed  Google Scholar 

  15. Scheffel H, Alkadhi H, Leschka P et al (2008) Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Hearth 94:1132–1137

    Article  CAS  Google Scholar 

  16. Hendel RC, Patel MR, Kramer CM, Poon M (2006) ACCF/ACR/SCCT/SCMR/ASNC/NAS CI/SIR appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging. J Am Coll Cardiol 48:1475–1497

    Article  PubMed  Google Scholar 

  17. Menzel H, Schibilla H, Teunen D et al (2000) European guidelines on quality criteria for computed tomography. European Commission, EUR 16262 EN, Luxembourg

    Google Scholar 

  18. Austen WG, Edwards JE, Frye RL et al (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease Council on Cardiovascular Surgery American Heart Association. Circulation 51:5–40

    CAS  PubMed  Google Scholar 

  19. Cademartiri F, Luccichenti G, Marano R et al (2003) Angiografia coronarica non invasiva con Tomografia Computerizzata spirale multistrato. Stato dell’arte e prospettive future. Radiol Med 106:284–296

    CAS  PubMed  Google Scholar 

  20. Cademartiri F, Marano R, Luccichenti G et al (2005) Valutazione delle immagini in coronarografia TC. Radiol Med 109:198–207

    PubMed  Google Scholar 

  21. Cademartiri F, Runza G, Marano R et al (2004) Imaging cardio-vascolare del torace con tomografia computerizzata multistrato a 16 canali e gating elettrocardiografico retrospettivo. Radiol Med 108:487–493

    PubMed  Google Scholar 

  22. International Commision on Radiological Protection (1997) Recommendations of the International Committee on Radiological Protection. Annals IRCP 1:1–53

    Google Scholar 

  23. Roberts W, Bax J, Davies L (2008) Cardiac CT and CT coronary angiography: technology and application. Heart 94:781–792

    Article  CAS  PubMed  Google Scholar 

  24. Abada H, Larchez C, Daoud B et al (2006) MDCT of the coronary arteries: feasibility of low-dose CT with ECG-pulsed tube current modulation to reduce radiation dose. AJR Am J Roentgenol 186:387–390

    Article  Google Scholar 

  25. Runza G, La Grutta L, Alaimo V et al (2008) Influence of heart rate in the selection of the optimal reconstruction window in routine clinical multislice coronary angiography. Radiol Med 113:644–657

    Article  CAS  PubMed  Google Scholar 

  26. Thomas S, Stabin M, Castronovo FP et al (2005) Radiation-absorbed dose from 201Tl-thallous chloride. J Nucl Med 46:502–506

    CAS  PubMed  Google Scholar 

  27. Hacker M, Schnell-Inderst P, Nasske D et al (2005) Radiation exposure of patients undergoing nuclear medicine procedures in Germany between 1996 and 2000. Nucklearmedizin 44:502–506

    Google Scholar 

  28. Deetjen A, Möllmann S, Conradi G et al (2007) Use of automatic exposure control in multislice computed tomography of the coronaries: comparison of 16-slice and 64-slice scanner data with conventional coronary angiography. Heart 93:1040–1043

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Malagò.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malagò, R., D’Onofrio, M., Baglio, I. et al. Choice strategy of different dose-saving protocols in 64-slice MDCT coronary angiography. Radiol med 114, 1196–1213 (2009). https://doi.org/10.1007/s11547-009-0432-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-009-0432-4

Keywords

Parole chiave

Navigation