Skip to main content
Log in

Control and Modulation of Fluid Flow in the Rat Kidney

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We have developed a mathematical model of the rat’s renal hemodynamics in the nephron level, and used that model to study flow control and signal transduction in the rat kidney. The model represents an afferent arteriole, glomerular filtration, and a segment of a short-loop nephron. The model afferent arteriole is myogenically active and represents smooth muscle membrane potential and electrical coupling. The myogenic mechanism is based on the assumption that the activity of nonselective cation channels is shifted by changes in transmural pressure, such that elevation in pressure induces vasoconstriction, which increases resistance to blood flow. From the afferent arteriole’s fluid delivery output, glomerular filtration rate is computed, based on conservation of plasma and plasma protein. Chloride concentration is then computed along the renal tubule based on solute conservation that represents water reabsorption along the proximal tubule and the water-permeable segment of the descending limb, and chloride fluxes driven by passive diffusion and active transport. The model’s autoregulatory response is predicted to maintain stable renal blood flow within a physiologic range of blood pressure values. Power spectra associated with time series predicted by the model reveal a prominent fundamental peak at ∼165 mHz arising from the afferent arteriole’s spontaneous vasomotion. Periodic external forcings interact with vasomotion to introduce heterodynes into the power spectra, significantly increasing their complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Chen, J., Sgouralis, I., Moore, L. C., Layton, H. E., & Layton, A. T. (2011). A mathematical model of the myogenic response to systolic pressure in the afferent arteriole. Am. J. Physiol., Ren. Fluid Electrolyte Physiol., 300, F669–F681.

    Article  Google Scholar 

  • Chon, K. H., Raghavan, R., Chen, Y.-M., Marsh, D. J., & Yip, K.-P. (2005). Interactions of TGF-dependent and myogenic oscillations in tubular pressure. Am. J. Physiol., Ren. Fluid Electrolyte Physiol., 288, F298–F307.

    Article  Google Scholar 

  • Cortell, S., Gennari, F. J., Davidman, M., Bossert, W. H., & Schwartz, W. B. (1973). A definition of proximal and distal tubular compliance. practical and theoretical implications. J. Clin. Invest., 52(9), 2330–2339.

    Article  Google Scholar 

  • Cupples, W. A., & Braam, B. (2007). Assessment of renal autoregulation. Am. J. Physiol., Ren. Fluid Electrolyte Physiol., 292(4), F1105–F1123.

    Article  Google Scholar 

  • Deen, W. M., Robertson, C. R., & Brenner, B. M. (1972). A model of glomerular ultrafiltration in the rat. Am. J. Physiol., 223(5), 1178–1183.

    Google Scholar 

  • Fujii, K., Heistad, D. D., & Faraci, F. M. (1990). Ionic mechanisms in spontaneous vasomotion of the rat basilar artery in vivo. J. Physiol., 430(1), 389–398.

    Article  Google Scholar 

  • Gertz, K. H., Mangos, J. A., Braun, G., & Paget, H. D. (1965). On the glomerular tubular balance in the rat kidney. Pflügers Arch., 285, 360–372.

    Article  Google Scholar 

  • Gonzalez-Fernandez, J. M., & Ermentrout, B. (1994). On the origin and dynamics of the vasomotion of small arteries. Math. Biosci., 119, 127–167.

    Article  MATH  Google Scholar 

  • Holstein-Rathlou, N.-H., & Leyssac, P. P. (1986). TGF-mediated oscillations in the proximal intratubular pressure: differences between spontaneously hypertensive rats and Wistar-Kyoto rats. Acta Physiol. Scand., 126, 333–339.

    Article  Google Scholar 

  • Holstein-Rathlou, N.-H., & Marsh, D. J. (1994). Renal blood flow regulation and arterial pressure fluctuations: a case study in nonlinear dynamics. Physiol. Rev., 74, 637–681.

    Google Scholar 

  • Holstein-Rathlou, N. H., & Marsh, D. J. (1989). Oscillations of tubular pressure, flow, and distal chloride concentration in rats. Am. J. Physiol., Ren. Fluid Electrolyte Physiol., 256(6), F1007–F1014.

    Google Scholar 

  • Just, A. (2007). Mechanisms of renal blood flow autoregulation: dynamics and contributions. Am. J. Physiol., Regul. Integr. Comp. Physiol., 292, R1–17.

    Article  Google Scholar 

  • Just, A., & Arendshorst, W. J. (2002). Dynamics and contribution of mechanisms mediating renal blood flow autoregulation. Am. J. Physiol., Regul. Integr. Comp. Physiol., 285, R619–R631.

    Article  Google Scholar 

  • Just, A., Ehmke, H., Toktomambetova, L., & Kirchheim, H. R. (2001). Dynamic characteristics and underlying mechanisms of renal blood flow autoregulation in the conscious dog. Am. J. Physiol., Ren. Fluid Electrolyte Physiol., 280, F1062–F1071.

    Google Scholar 

  • Layton, A. T. (2010). Feedback-mediated dynamics in a model of a compliant thick ascending limb. Math. Biosci., 228, 185–194.

    Article  MathSciNet  MATH  Google Scholar 

  • Layton, A. T., Moore, L. C., & Layton, H. E. (2009). Tubuloglomerular feedback signal transduction in a compliant thick ascending limb. Am. J. Physiol., Ren. Fluid Electrolyte Physiol. doi:10.1152/ajprenal.00732.2010.

    Google Scholar 

  • Layton, A. T., Pham, P., & Ryu, H. (2012). Signal transduction in a compliant short loop of Henle. Int. J. Numer. Methods Biomed. Eng., 28(3), 369–380.

    Article  MathSciNet  MATH  Google Scholar 

  • Leyssac, P. P., & Holstein-Rathlou, N. H. (1986). Effects of various transport inhibitors on oscillating tgf pressure responses in the rat. Pflügers Arch., 407(3), 285–291.

    Article  Google Scholar 

  • Loutzenhiser, K., & Loutzenhiser, R. (2000). Angiotensin ii-induced ca2+ influx in renal afferent and efferent arterioles differing roles of voltage-gated and store-operated ca2+ entry. Circ. Res., 87(7), 551–557.

    Article  Google Scholar 

  • Loutzenhiser, R., Bidani, A., & Chilton, L. (2002). Renal myogenic response: kinetic attributes and physiologic role. Circ. Res., 90, 1316–1324.

    Article  Google Scholar 

  • Loutzenhiser, R., Bidani, A., & Wang, X. (2004). Systolic pressure and the myogenic response of the renal afferent arteriole. Acta Physiol. Scand., 181, 404–413.

    Article  Google Scholar 

  • Loutzenhiser, R., Griffin, K., Williamson, G., & Bidani, A. (2006). Renal autoregulation: new perspectives regarding the protective and regulatory roles of the underlying mechanisms. Am. J. Physiol., Regul. Integr. Comp. Physiol., 290(5), R1153–R1167.

    Article  Google Scholar 

  • Lush, D. J., & Fray, J. C. S. (1984). Steady-state autoregulation of renal blood flow: a myogenic model. Am. J. Physiol., Regul. Integr. Comp. Physiol., 247, R89–R99.

    Google Scholar 

  • Marsh, D. J., Sosnovtseva, O. V., Chon, K. H., & Holstein-Rathlou, N.-H. (2005). Nonlinear interactions in renal blood flow regulation. Am. J. Physiol., Regul. Integr. Comp. Physiol., 288, R1143–R1159.

    Article  Google Scholar 

  • Moore, L. C., Rich, A., & Casellas, D. (1994). Ascending myogenic autoregulation: interactions between tubuloglomerular feedback and myogenic mechanisms. Bull. Math. Biol., 56(3), 391–410.

    Article  MATH  Google Scholar 

  • Osol, G., & Halpern, W. (1988). Spontaneous vasomotion in pressurized cerebral arteries from genetically hypertensive rats. Am. J. Physiol., Heart Circ. Physiol., 254(1), H28–H33.

    Google Scholar 

  • Raghavan, R., Chen, X., Yip, K.-P., Marsh, D. J., & Chon, K. H. (2006). Interactions between TGF-dependent and myogenic oscillations in tubular pressure and whole kidney blood flow in both SDR and SHR. Am. J. Physiol., Ren. Fluid Electrolyte Physiol., 290, F720–F732.

    Article  Google Scholar 

  • Schnermann, J., & Briggs, J. P. (2008). Function of the juxtaglomerular apparatus: control of glomerular hemodynamics and renin secretion. In R. J. Alpern & S. C. Hebert (Eds.), Seldin and Giebisch’s the Kidney: physiology and pathophysiology (4th ed., pp. 589–626). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Sgouralis, I., & Layton, A. T. (2012). Autoregulation and conduction of vasomotor responses in a mathematical model of the rat afferent arteriole. Am. J. Physiol., Ren. Fluid Electrolyte Physiol. doi:10.1152/ajprenal.00589.2011.

    Google Scholar 

  • Siegel, G., Ebeling, B. J., Hofer, H. W., Nolte, J., Roedel, H., & Klubendorf, D. (1984). Vascular smooth muscle rhythmicity. In Mechanisms of blood pressure waves (pp. 319–338).

    Google Scholar 

  • Siu, K. L., Sung, B., Cupples, W. A., Moore, L. C., & Chon, K. H. (2009). Detection of low-frequency oscillations in renal blood flow. Am. J. Physiol., Ren. Fluid Electrolyte Physiol., 297, F155–F162.

    Article  Google Scholar 

  • Yip, K.-P., Holstein-Rathlou, N.-H., & Marsh, D. J. (1991). Chaos in blood flow control in genetic and renovascular hypertensive rats. Am. J. Physiol., Ren. Fluid Electrolyte Physiol., 261, F400–F408.

    Google Scholar 

Download references

Acknowledgements

This research was supported, in part, by the National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, via grant DK089066.

Portions of this work were presented at Experimental Biology 2012 (FASEB J. 26:690.2, 2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Sgouralis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sgouralis, I., Layton, A.T. Control and Modulation of Fluid Flow in the Rat Kidney. Bull Math Biol 75, 2551–2574 (2013). https://doi.org/10.1007/s11538-013-9907-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9907-5

Keywords

Navigation