Skip to main content

Modeling Autoregulation of the Afferent Arteriole of the Rat Kidney

  • Conference paper
  • First Online:
Women in Mathematical Biology

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 8))

  • 754 Accesses

Abstract

One of the key autoregulatory mechanisms that control blood flow in the kidney is the myogenic response. Subject to increased pressure, the renal afferent arteriole responds with an increase in muscle tone and a decrease in diameter. To investigate the myogenic response of an afferent arteriole segment of the rat kidney, we extend a mathematical model of an afferent arteriole cell. For each cell, we include detailed Ca2+ signaling, transmembrane transport of major ions, the kinetics of myosin light chain phosphorylation, as well as cellular contraction and wall mechanics. To model an afferent arteriole segment, a number of cell models are connected in series by gap junctions, which link the cytoplasm of neighboring cells. Blood flow through the afferent arteriole is modeled using Poiseuille flow. Simulation of an inflow pressure up-step leads to a decrease in the diameter for the proximal part of the vessel (vasoconstriction) and to an increase in proximal vessel diameter (vasodilation) for an inflow pressure down-step. Through its myogenic response, the afferent arteriole segment model yields approximately stable outflow pressure for a physiological range of inflow pressures (100–160 mmHg), consistent with experimental observations. The present model can be incorporated as a key component into models of integrated renal hemodynamic regulation.

The original version of this chapter was revised. An erratum to this chapter can be found at https://doi.org/10.1007/978-3-319-60304-9_13

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The first and second authors made equal contributions.

References

  1. Carlson, B.E., Arciero, J.C., Secomb, T.W.: Theoretical model of blood flow autoregulation: roles of myogenic, shear-dependent, and metabolic responses. Am. J. Physiol. Heart Circ. Physiol.295, H1572–H1579 (2008)

    Article  Google Scholar 

  2. De Young, G.W., Keizer, J.: A single-pool inositol 1,4,5-triphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentrations. Proc. Natl. Acad. Sci. U. S. A.89, 9895–9899 (1992)

    Article  Google Scholar 

  3. Deen, W., Robertson, C., Brenner, B.: A model of glomerular ultrafiltration in the rat. Am. J. Physiol.223(5), 1178–1183 (1972)

    Google Scholar 

  4. Eaton, D., Pooler, J.: Vander’s Renal Physiology, 6th edn. McGraw-Hill Medical, New York (2004)

    Google Scholar 

  5. Edwards, A., Layton, A.: Calcium dynamics underlying the afferent arteriole myogenic response. Am. J. Physiol. Ren. Physiol.306, F34–F48 (2014)

    Article  Google Scholar 

  6. Faber, G.M., Silva, J., Livshitz, L., Rudy, Y.: Kinetic properties of the cardiac L-type Ca2+ channel and its role in myocyte electrophysiology: a theoretical investigation. Biophys. J.92, 1522–1543 (2007)

    Article  Google Scholar 

  7. Fajmut, A., Jagodič, M., Brumen, M.: Mathematical modeling of the myosin light chain kinase activation. J. Chem. Inf. Model.45, 1605–1609 (2005)

    Article  Google Scholar 

  8. Jacobsen, J.C.B., Aalkjær, C., Nilsson, H., Matchkov, V.V., Freiberg, J., Holstein-Rathlou, N.H.: Activation of a cGMP-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole cell oscillations in smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol.293, H215–H228 (2007)

    Article  Google Scholar 

  9. Kaneko-Kawano, T., Takasu, F., Naoki, H., Sakumura, Y., Ishii, S., Ueba, T., Eiyama, A., Okada, A., Kawano, Y., Suzuki, K.: Dynamic regulation of myosin light chain phosphorylation by Rho-kinase. PLoS One7, e39269 (2012)

    Article  Google Scholar 

  10. Keizer, J., Levine, L.: Ryanodine receptor adaptation and Ca2+-induced Ca2+ release dependent Ca2+ oscillations. Biophys. J.71, 3477–3487 (1996)

    Article  Google Scholar 

  11. Kneller, J., Ramirez, R.J., Chartier, D., Courtemanche, M., Nattel, S.: Time-dependent transients in an ionically based mathematical model of the canine atrial action potential. Am. J. Physiol. Heart Circ. Physiol.282, H1437–H1451 (2002)

    Article  Google Scholar 

  12. Layton, A.: Feedback-mediated dynamics in a model of a compliant thick ascending limb. Math. Biosci.228, 185–194 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mbikou, P., Fajmut, A., Brumen, M., Roux, E.: Contribution of Rho kinase to the early phase of the calcium-contraction coupling in airway smooth muscle. Exp. Physiol.96, 240–258 (2011)

    Article  Google Scholar 

  14. Schnermann, J., Briggs, J.: Function of the juxtaglomerular apparatus: control of glomerular hemodynamics and renin secretion. In: Alpern, R.J., Hebert, S.C. (eds.) Seldin and Giebisch’s The Kidney: Physiology and Pathophysiology, 4th edn., pp. 589–626. Elsevier Academic Press, Amsterdam, Boston (2008)

    Chapter  Google Scholar 

  15. Sgouralis, I., Layton, A.: Autoregulation and conduction of vasomotor responses in a mathematical model of the rat afferent arteriole. Am. J. Physiol. Ren. Physiol.303, F229–F239 (2012)

    Article  Google Scholar 

  16. Sgouralis, I., Layton, A.: Theoretical assessment of renal autoregulatory mechanisms. Am. J. Physiol. Ren. Physiol.306, F1357–F1371 (2014)

    Article  Google Scholar 

  17. Shannon, T.R., Wang, F., Puglisi, J., Weber, C., Bers, D.M.: A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. Biophys. J.87, 3351–3371 (2004)

    Article  Google Scholar 

  18. Wu, B.N., Luykenaar, K.D., Brayden, J.E., Giles, W.R., Corteling, R.L., Wiehler, W.B., Welsh, D.G.: Hyposmotic challenge inhibits inward rectifying K+ channels in cerebral arterial smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol.292, H1085–H1094 (2007)

    Article  Google Scholar 

  19. Yang, J., Clark Jr., J.W., Bryan, R.M., Robertson, C.: The myogenic response in isolated rat cerebrovascular arteries: smooth muscle cell model. Med. Eng. Phys.25, 691–709 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work is the product of a workshop and short-term visits supported by the National Institute for Mathematical and Biological Synthesis, an Institute sponsored by the National Science Foundation through NSF Award #DBI-1300426, with additional support from the University of Tennessee, Knoxville. Support was also provided by the National Institutes of Health: National Institute of Diabetes and Digestive and Kidney Diseases and by the National Science Foundation, via grants #DK089066 and #DMS-1263995 to AT Layton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracy L. Stepien .

Editor information

Editors and Affiliations

Appendix

Appendix

This appendix contains the remaining equations besides the ones given in Sect. 2.1 for the afferent arteriole smooth muscle single-cell model of Edwards and Layton [5]. For further details and kinetic diagrams, refer to [5].

1.1 Transmembrane Ionic Transport

1.1.1 Ion and Charge Conservation Equations

The cytosolic concentrations of K+, Na+, Cl, and Ca2+ are determined by considering the net sum of their respective fluxes into the cytosol (described in subsequent sections) and integrating

$$\displaystyle{ \frac{d[\mathrm{K}]_{\mathrm{cyt}}} {dt} = -\frac{\left (I_{\mathrm{K,b}} + I_{\mathrm{K,ir}} + I_{\mathrm{K,v}} + I_{\mathrm{K,Ca}} - 2I_{\mathrm{NaK}}\right )} {F \cdot \mathrm{ vol}_{\mathrm{cyt}}}, }$$
(12a)
$$\displaystyle{ \frac{d[\mathrm{Na}]_{\mathrm{cyt}}} {dt} = -\frac{\left (I_{\mathrm{Na,b}} + I_{\mathrm{Na,Pres}} + 3I_{\mathrm{NaK}} + 3I_{\mathrm{NCX}}\right )} {F \cdot \mathrm{ vol}_{\mathrm{cyt}}} + \frac{J_{\mathrm{NaCl}}} {\mathrm{vol}_{\mathrm{cyt}}}, }$$
(12b)
$$\displaystyle{ \frac{d[\mathrm{Cl}]_{\mathrm{cyt}}} {dt} = \frac{I_{\mathrm{Cl,b}} + I_{\mathrm{Cl,Ca}}} {F \cdot \mathrm{ vol}_{\mathrm{cyt}}} + \frac{J_{\mathrm{NaCl}}} {\mathrm{vol}_{\mathrm{cyt}}}, }$$
(12c)
$$\displaystyle\begin{array}{rcl} \frac{d[\mathrm{Ca}]_{\mathrm{cyt}}} {dt} & =& -\frac{\left (I_{\mathrm{Ca,b}} + I_{\mathrm{Ca,Pres}} + I_{\mathrm{PMCA}} + I_{\mathrm{Ca,L}} - 2I_{\mathrm{NCX}} + I_{\mathrm{SERCA}} - I_{\mathrm{RyR}} - I_{\mathrm{IP3R}}\right )} {2F \cdot \mathrm{ vol}_{\mathrm{cyt,Ca}}} \\ & +& R_{\mathrm{CaM}}^{\mathrm{cyt}} + R_{\mathrm{ Bf}}^{\mathrm{cyt}}. {}\end{array}$$
(12d)

Parameter values and definitions are given in Table 1.

In the sarcoplasmic reticulum (SR),

$$\displaystyle{ \frac{d[\mathrm{Ca}]_{\mathrm{SR}}} {dt} = \frac{I_{\mathrm{SERCA}} - I_{\mathrm{RyR}} - I_{\mathrm{IP3R}}} {2F \cdot \mathrm{ vol}_{\mathrm{SR}}} + R_{\mathrm{Calseq}}^{\mathrm{SR}}. }$$
(13)

The reaction terms R CaM cyt, R Bf cyt, and R Calseq SR account for the buffering of Ca2+ by calmodulin, other cytosolic buffers, and calsequestrin, respectively, and are described in Eq. (35) below.

1.1.2 Background Currents

The background current of ion i, for i = K+, Na+, Cl, Ca2+, is

$$\displaystyle{ I_{i,\mathrm{b}} = G_{i,\mathrm{b}}\left (V _{\mathrm{m}} - E_{i}\right ), }$$
(14)

where the Nernst potential of ion i with valence z i is

$$\displaystyle{ E_{i} = \frac{RT} {z_{i}F}\ln \left (\frac{[i]_{\mathrm{out}}} {[i]_{\mathrm{cyt}}} \right ). }$$
(15)

Parameter values and definitions are given in Table 1.

1.1.3 Potassium Transport Pathways

The potassium current across inward-rectifier ( K ir) channels is determined as

$$\displaystyle{ I_{\mathrm{K,ir}} = G_{\mathrm{Kir}}P_{\mathrm{Kir}}\left (\frac{[K]_{\mathrm{out}}} {[K]_{\mathrm{ref}}} \right )^{0.9}\left (V _{\mathrm{ m}} - E_{\mathrm{K}}\right ), }$$
(16a)
$$\displaystyle{ P_{\mathrm{Kir}} = \frac{1} {1 +\exp \left (\frac{V _{\mathrm{m}} - V _{\mathrm{Kir}}} {s_{\mathrm{Kir}}} \right )}, }$$
(16b)

where the exponential factor, 0.9, the potential of half-maximal activation, V Kir, and the slope, s Kir, were obtained by fitting K ir currents in cerebral arterial smooth muscle cells (Wu et al. [18]). Parameter values are given in Tables 1 and 3.

Table 3 Parameters for potassium currents

The potassium current across delayed-rectifier ( K v) channels is given by

$$\displaystyle{ I_{\mathrm{K,v}} = G_{\mathrm{Kv}}\left (P_{\mathrm{Kv}}\right )^{2}\left (V _{\mathrm{ m}} - E_{\mathrm{K}}\right ), }$$
(17a)
$$\displaystyle{ P_{\mathrm{Kv}} = 0.58P_{\mathrm{Kv1}} + 0.42P_{\mathrm{Kv2}}, }$$
(17b)
$$\displaystyle{ \frac{dP_{\mathrm{Kv1}}} {dt} = \frac{\bar{P}_{\mathrm{Kv}} - P_{\mathrm{Kv1}}} {\tau _{\mathrm{Kv1}}}, }$$
(17c)
$$\displaystyle{ \frac{dP_{\mathrm{Kv2}}} {dt} = \frac{\bar{P}_{\mathrm{Kv}} - P_{\mathrm{Kv2}}} {\tau _{\mathrm{Kv2}}}, }$$
(17d)
$$\displaystyle{ \bar{P}_{\mathrm{Kv}} = \frac{1} {1 +\exp \left (-\frac{V _{\mathrm{m}} + 1.77} {14.52} \right )}, }$$
(17e)
$$\displaystyle{ \tau _{\mathrm{kv1}} = 210.99\exp \left [-\left (\frac{V _{\mathrm{m}} + 214.34} {195.35} \right )^{2}\right ] - 20.59, }$$
(17f)
$$\displaystyle{ \tau _{\mathrm{kv2}} = 821.39\exp \left [-\left (\frac{V _{\mathrm{m}} + 31.59} {27.46} \right )^{2}\right ] + 0.189, }$$
(17g)

where P Kv1 and P Kv2 are the two components of the channel activation process and τ Kv1 and τ Kv2 are the respective time constants (in ms) (Yang et al. [19]). Variable\(\bar{P}_{\mathrm{Kv}}\) is voltage-dependent and represents the steady-state value of P Kv1 and P Kv2.

The potassium current across Ca2+-activated K+ ( K Ca) channels is computed as

$$\displaystyle{ I_{\mathrm{K,Ca}} = G_{\mathrm{KCa}}P_{\mathrm{KCa}}\left (V _{\mathrm{m}} - E_{\mathrm{K}}\right ), }$$
(18a)
$$\displaystyle{ P_{\mathrm{KCa}} = 0.65P_{\mathrm{f}} + 0.35P_{\mathrm{s}}, }$$
(18b)
$$\displaystyle{ \frac{dP_{\mathrm{f}}} {dt} = \frac{\bar{P}_{\mathrm{KCa}} - P_{\mathrm{f}}} {\tau _{\mathrm{Pf}}}, }$$
(18c)
$$\displaystyle{ \frac{dP_{\mathrm{s}}} {dt} = \frac{\bar{P}_{\mathrm{KCa}} - P_{\mathrm{s}}} {\tau _{\mathrm{Ps}}}, }$$
(18d)
$$\displaystyle{ \bar{P}_{\mathrm{KCa}} = \frac{1} {1 +\exp \left (-\frac{V _{\mathrm{m}} - V _{\mathrm{KCa}}} {21.70} \right )}, }$$
(18e)
$$\displaystyle{ V _{\mathrm{KCa}} = -45.0\,\,\,\log _{10}\left ([\mathrm{Ca}]_{\mathrm{cyt}}\right ) - 63.55, }$$
(18f)

where P f and P s are the fast and slow components of the channel activation process, respectively, and τ Pf and τ Ps are the corresponding time constants (Yang et al. [19]). The steady-state open probability of the channels is given by\(\bar{P}_{\mathrm{KCa}}\).

The ATP-dependent K+ channels are not considered in the Edwards and Layton model [5] since it assumed that their conductance is negligible in well-perfused and oxygenated arterioles.

1.1.4 Sodium Transport Pathways

The current across Na+/K+-ATPase pumps is determined as

$$\displaystyle{ I_{\mathrm{NaK}} = I_{\mathrm{NaK,max}}\left ( \frac{[K]_{\mathrm{out}}} {[K]_{\mathrm{out}} + K_{\mathrm{m,NaK}}^{\mathrm{K}}}\right )^{2}\left ( \frac{[\mathrm{Na}]_{\mathrm{cyt}}} {[\mathrm{Na}]_{\mathrm{cyt}} + K_{\mathrm{m,NaK}}^{\mathrm{Na}}}\right )^{3}. }$$
(19)

The current across Na+/Ca2+ (NCX) exchangers is given by

$$\displaystyle{ I_{\mathrm{NCX}} = I_{\mathrm{NCX,max}}A_{\mathrm{NCX}}\left (\frac{\varPhi _{\mathrm{F}}[\mathrm{Na}]_{\mathrm{cyt}}^{3}[\mathrm{Ca}]_{\mathrm{out}} -\varPhi _{\mathrm{R}}[\mathrm{Na}]_{\mathrm{out}}^{3}[\mathrm{Ca}]_{\mathrm{cyt}}} {G(1 + k_{\mathrm{sat}}\varPhi _{\mathrm{R}})} \right ), }$$
(20a)
$$\displaystyle{ A_{\mathrm{NCX}} = \frac{[\mathrm{Ca}]_{\mathrm{cyt}}^{2}} {\left (K_{\mathrm{m,NCX}}^{\mathrm{Ca}}\right )^{2} + [\mathrm{Ca}]_{\mathrm{cyt}}^{2}}, }$$
(20b)
$$\displaystyle{ \varPhi _{\mathrm{F}} =\exp \left (\frac{\gamma V _{\mathrm{m}}F} {RT} \right ), }$$
(20c)
$$\displaystyle{ \varPhi _{\mathrm{R}} =\exp \left (\frac{(\gamma -1)V _{\mathrm{m}}F} {RT} \right ), }$$
(20d)
$$\displaystyle\begin{array}{rcl} G& =& [\mathrm{Na}]_{\mathrm{out}}^{3}[\mathrm{Ca}]_{\mathrm{ cyt}} + [\mathrm{Na}]_{\mathrm{cyt}}^{3}[\mathrm{Ca}]_{\mathrm{ out}} + K_{\mathrm{mNao}}^{3}[\mathrm{Ca}]_{\mathrm{ cyt}} \\ & +& K_{\mathrm{mCao}}[\mathrm{Na}]_{\mathrm{cyt}}^{3} + K_{\mathrm{ mNai}}^{3}[\mathrm{Ca}]_{\mathrm{ out}}\left (1 + [\mathrm{Ca}]_{\mathrm{cyt}}/K_{\mathrm{mCai}}\right ) \\ & +& K_{\mathrm{mCai}}[\mathrm{Na}]_{\mathrm{out}}^{3}\left (1 + [\mathrm{Na}]_{\mathrm{ cyt}}^{3}/K_{\mathrm{ mNai}}^{3}\right ) {}\end{array}$$
(20e)

(Shannon et al. [17]). The flux across NaCl cotransporters is computed as

$$\displaystyle{ J_{\mathrm{NaCl}} = J_{\mathrm{NaCl,max}} \frac{\left (E_{\mathrm{Na}} - E_{\mathrm{Cl}}\right )^{4}} {\left (E_{\mathrm{Na}} - E_{\mathrm{Cl}}\right )^{4} + R_{\mathrm{NaCl}}^{4}} }$$
(21)

(Kneller et al. [11]). Parameter values are given in Tables 1 and 4.

1.1.5 Chloride Transport Pathways

The current across Ca2+-activated Cl (ClCa) channels is

$$\displaystyle{ I_{\mathrm{Cl,Ca}} = G_{\mathrm{ClCa}}P_{\mathrm{ClCa}}(V _{\mathrm{m}} - E_{\mathrm{Cl}}), }$$
(22a)
$$\displaystyle{ \frac{dP_{\mathrm{ClCa}}} {dt} = \frac{\bar{P}_{\mathrm{ClCa}} - P_{\mathrm{ClCa}}} {\tau _{\mathrm{ClCa}}}, }$$
(22b)
$$\displaystyle{ \bar{P}_{\mathrm{ClCa}} = \frac{[\mathrm{Ca}]_{\mathrm{cyt}}^{3}} {[\mathrm{Ca}]_{\mathrm{cyt}}^{3} + K_{\mathrm{ClCa}}^{3}}, }$$
(22c)

where\(\bar{P}_{\mathrm{ClCa}}\) is the steady-state open probability of the channel (Jacobson et al. [8]). Parameter values are given in Table 5.

Table 5 Parameters for chloride currents

1.1.6 Calcium Transport Pathways

Calcium is exchanged between the cytosol and the extracellular space, and between the cytosol and the SR, which acts as a storage compartment. Parameter values for calcium currents and buffer reactions are given in Tables 1 and 6.

Table 6 Parameters for calcium currents and buffers

The current through plasma membrane Ca2+ (PMCA) pumps is determined as

$$\displaystyle{ I_{\mathrm{PMCA}} = I_{\mathrm{PMCA,max}}\left ( \frac{[\mathrm{Ca}]_{\mathrm{cyt}}} {K_{\mathrm{m,PMCA}}^{\mathrm{Ca}} + [\mathrm{Ca}]_{\mathrm{cyt}}}\right ). }$$
(23)

The CaV1.2 model of Faber et al. [6] is used for the current across L-type Ca2+ channels. The voltage-dependent gating mode of the channel is considered, which includes four closed states ( c 0, c 1, c 2, and c 3), one open state ( p o), and fast ( i vf) and slow ( i vs) inactivated states. The corresponding equations are

$$\displaystyle{ I_{\mathrm{Ca,L}} = G_{\mathrm{CaL}}p_{\mathrm{o}}\left (V _{\mathrm{m}} - E_{\mathrm{Ca}}\right ), }$$
(24a)
$$\displaystyle{ \frac{dc_{0}} {dt} =\beta c_{1} - (4\alpha )c_{0}, }$$
(24b)
$$\displaystyle{ \frac{dc_{1}} {dt} = (4\alpha )c_{0} + (2\beta )c_{2} - (3\alpha +\beta )c_{1}, }$$
(24c)
$$\displaystyle{ \frac{dc_{2}} {dt} = (3\alpha )c_{1} + (3\beta )c_{3} - (2\alpha + 2\beta )c_{2}, }$$
(24d)
$$\displaystyle{ \frac{dc_{3}} {dt} = (2\alpha )c_{2} + (4\beta )p_{\mathrm{o}} +\omega _{\mathrm{f}}i_{\mathrm{vf}} +\omega _{\mathrm{s}}i_{\mathrm{vs}} - (\alpha +3\beta +\gamma _{\mathrm{f}} +\gamma _{\mathrm{s}})c_{3}, }$$
(24e)
$$\displaystyle{ \frac{dp_{\mathrm{o}}} {dt} =\alpha c_{3} +\lambda _{\mathrm{f}}i_{\mathrm{vf}} +\lambda _{s}i_{\mathrm{vs}} - (4\beta +\phi _{\mathrm{f}} +\phi _{\mathrm{s}})p_{\mathrm{o}}, }$$
(24f)
$$\displaystyle{ \frac{di_{\mathrm{vf}}} {dt} =\gamma _{\mathrm{f}}c_{3} +\phi _{\mathrm{f}}p_{\mathrm{o}} +\omega _{\mathrm{sf}}i_{\mathrm{vs}} - (\omega _{\mathrm{f}} +\lambda _{\mathrm{f}} +\omega _{\mathrm{fs}})i_{\mathrm{vf}}, }$$
(24g)
$$\displaystyle{ \frac{di_{\mathrm{vs}}} {dt} =\gamma _{\mathrm{s}}c_{3} +\phi _{\mathrm{s}}p_{\mathrm{o}} +\omega _{\mathrm{fs}}i_{\mathrm{vf}} - (\omega _{\mathrm{s}} +\lambda _{\mathrm{s}} +\omega _{\mathrm{sf}})i_{\mathrm{vs}}, }$$
(24h)

where

$$\displaystyle\begin{array}{rcl} \alpha & =& 0.925\exp (V _{\mathrm{m}}/30),\qquad \qquad \,\,\,\,\,\,\beta = 0.390\exp (V _{\mathrm{m}}/40), {}\\ \gamma _{\mathrm{f}}& =& 0.245\exp (V _{\mathrm{m}}/10),\qquad \qquad \,\,\,\,\,\,\gamma _{\mathrm{s}} = 0.005\exp (-V _{\mathrm{m}}/40), {}\\ \phi _{\mathrm{f}}& =& 0.020\exp (V _{\mathrm{m}}/500),\qquad \qquad \,\,\,\,\phi _{\mathrm{s}} = 0.030\exp (-V _{\mathrm{m}}/280), {}\\ \lambda _{\mathrm{f}}& =& 0.035\exp (-V _{\mathrm{m}}/300),\qquad \qquad \lambda _{\mathrm{s}} = 0.0011\exp (V _{\mathrm{m}}/500), {}\\ \omega _{\mathrm{f}}& =& (4\beta \lambda _{\mathrm{f}}\gamma _{\mathrm{f}})/(\alpha \phi _{\mathrm{f}}),\qquad \qquad \qquad \,\,\,\omega _{\mathrm{s}} = (4\beta \lambda _{\mathrm{s}}\gamma _{\mathrm{s}})/(\alpha \phi _{\mathrm{s}}), {}\\ \omega _{\mathrm{sf}}& =& (\lambda _{\mathrm{s}}\phi _{\mathrm{f}})/\lambda _{\mathrm{f}},\qquad \qquad \qquad \qquad \quad \omega _{\mathrm{fs}} =\phi _{\mathrm{s}}. {}\\ \end{array}$$

T-type Ca2+ channels are not considered in the Edwards and Layton [5] model.

The current across sarco/endoplasmic reticulum Ca2+ (SERCA) pumps is given by

$$\displaystyle{ I_{\mathrm{SERCA}} = I_{\mathrm{SERCA,max}}\left ( \frac{[\mathrm{Ca}]_{\mathrm{cyt}}^{2}} {\left (K_{\mathrm{m,SERCA}}^{\mathrm{Ca}}\right )^{2} + [\mathrm{Ca}]_{\mathrm{cyt}}^{2}}\right ). }$$
(25)

The RyR model of Keizer and Levine [10] is used to determine the RyR-mediated release current into the cytosol,

$$\displaystyle{ I_{\mathrm{RyR}} = v_{\mathrm{RyR}}P_{\mathrm{RyR}}\left ([\mathrm{Ca}]_{\mathrm{SR}} - [\mathrm{Ca}]_{\mathrm{cyt}}\right )\left (2F \cdot \mathrm{ vol}_{\mathrm{SR}}\right ), }$$
(26)

where v RyR is the RyR rate constant. The open probability of RyR ( P RyR) is calculated as

$$\displaystyle{ P_{\mathrm{RyR}} = \frac{\omega \left (1 + \left ([\mathrm{Ca}]_{\mathrm{cyt}}/K_{\mathrm{b}}\right )^{3}\right )} {1 + \left (K_{\mathrm{a}}/[\mathrm{Ca}]_{\mathrm{cyt}}\right )^{4} + \left ([\mathrm{Ca}]_{\mathrm{cyt}}/K_{\mathrm{b}}\right )^{3}}, }$$
(27a)
$$\displaystyle{ \frac{d\omega } {dt} = \frac{k_{\mathrm{c}}^{-}\left (\omega ^{\infty }-\omega \right )} {\omega ^{\infty }}, }$$
(27b)
$$\displaystyle{ \omega ^{\infty } = \frac{1 + \left (K_{\mathrm{a}}/[\mathrm{Ca}]_{\mathrm{cyt}}\right )^{4} + \left ([\mathrm{Ca}]_{\mathrm{ cyt}}/K_{\mathrm{b}}\right )^{3}} {1 + 1/K_{\mathrm{c}} + \left (K_{\mathrm{a}}/[\mathrm{Ca}]_{\mathrm{cyt}}\right )^{4} + \left ([\mathrm{Ca}]_{\mathrm{cyt}}/K_{\mathrm{b}}\right )^{3}}. }$$
(27c)

The IP3R model of De Young and Keizer [2] is used to determine the IP3R-mediated release current in the cytosol,

$$\displaystyle{ I_{\mathrm{IP3R}} = v_{\mathrm{IP3R}}(x_{110})^{3}\left ([\mathrm{Ca}]_{\mathrm{ SR}} - [\mathrm{Ca}]_{\mathrm{cyt}}\right )\left (2F \cdot \mathrm{ vol}_{\mathrm{SR}}\right ), }$$
(28)

where v IP3R is the IP3R rate constant and x 110 is the fraction of receptors bound by one activated Ca2+ and one IP3, calculated as described below. The cytosolic concentration of IP3 is calculated as

$$\displaystyle{ \frac{d[\mathrm{IP}_{3}]_{\mathrm{cyt}}} {dt} = k_{+}^{\mathrm{IP3}}[\mathrm{IP}_{ 3}]_{\mathrm{ref}}\left (\frac{[\mathrm{Ca}]_{\mathrm{cyt}} + (1 -\alpha _{4})k_{4}} {[\mathrm{Ca}]_{\mathrm{cyt}} + k_{4}} \right ) - k_{-}^{\mathrm{IP3}}[\mathrm{IP}_{ 3}]_{\mathrm{cyt}}, }$$
(29)

where k + IP3 and k IP3 are the rate constants for IP3 formation and consumption, respectively, [IP3]ref is a reference IP3 concentration, and α 4 determines the strength of the Ca2+ feedback on IP3 production.

Three equivalent and independent IP3R subunits are assumed to be involved in conduction, and each subunit has one IP3 binding site (denoted as site 1) and two Ca2+ binding sites, one for activation ( site 2) and one for inhibition ( site 3). The fraction of receptors in state S\(_{i_{1}i_{2}i_{3}}\) is denoted by\(x_{i_{1}i_{2}i_{3}}\), where i j equals 0 if the j-th binding site is unoccupied or 1 if it is occupied. All three subunits must be in the state S110 (corresponding to the binding of one IP3 and one activating Ca2+) for the IP3R channel to be open. Assuming rapid equilibrium for IP3 binding,

$$\displaystyle{ a_{1}[\mathrm{Ca}]_{\mathrm{cyt}}x_{0k0} = b_{1}x_{1k0},\qquad k = 0,1, }$$
(30a)
$$\displaystyle{ a_{3}[\mathrm{Ca}]_{\mathrm{cyt}}x_{0k1} = b_{3}x_{1k1},\qquad k = 0,1. }$$
(30b)

Defining d k = b k a k , the conservation equations for\(x_{0i_{2}i_{3}}\) are

$$\displaystyle{ \frac{dx_{000}} {dt} = -a_{4}\left ([\mathrm{Ca}]_{\mathrm{cyt}}x_{000} - d_{4}x_{001}\right ) - a_{5}\left ([\mathrm{Ca}]_{\mathrm{cyt}}x_{000} - d_{5}x_{010}\right ), }$$
(31a)
$$\displaystyle{ \frac{dx_{001}} {dt} = +a_{4}\left ([\mathrm{Ca}]_{\mathrm{cyt}}x_{000} - d_{4}x_{001}\right ) - a_{5}\left ([\mathrm{Ca}]_{\mathrm{cyt}}x_{001} - d_{5}x_{011}\right ), }$$
(31b)
$$\displaystyle{ \frac{dx_{010}} {dt} = +a_{5}\left ([\mathrm{Ca}]_{\mathrm{cyt}}x_{000} - d_{5}x_{010}\right ) - a_{4}\left ([\mathrm{Ca}]_{\mathrm{cyt}}x_{010} - d_{4}x_{011}\right ), }$$
(31c)
$$\displaystyle{ x_{011} = 1 -\left (x_{000} + x_{001} + x_{010} + x_{100} + x_{101} + x_{110} + x_{111}\right ). }$$
(31d)

1.2 Intracellular Ca2+ Dynamics

1.2.1 Calcium Buffers

Calcium buffering by cytosolic Ca2+-binding proteins other than calmodulin is described as a first-order dynamic process,

$$\displaystyle{ \frac{d[\mathrm{Bf} \cdot \mathrm{ Ca}]_{\mathrm{cyt}}} {dt} = k_{\mathrm{on}}^{\mathrm{Bf}}[\mathrm{Ca}]_{\mathrm{ cyt}}\left ([\mathrm{Bf}]_{\mathrm{cyt}}^{\mathrm{tot}} - [\mathrm{Bf} \cdot \mathrm{ Ca}]_{\mathrm{ cyt}}\right ) - k_{\mathrm{off}}^{\mathrm{Bf}}[\mathrm{Bf} \cdot \mathrm{ Ca}]_{\mathrm{ cyt}}, }$$
(32)

where [Bf]cyt tot is the total concentration of Ca2+-binding proteins other than calmodulin in the cytosol and [Bf⋅ Ca]cyt is the concentration of the calcium-bound sites of these other buffering elements.

Calcium buffering by calsequestrin in the SR is described as

$$\displaystyle\begin{array}{rcl} \frac{d[\mathrm{Calseq} \cdot \mathrm{ Ca}]_{\mathrm{SR}}} {dt} & =& k_{\mathrm{on}}^{\mathrm{Calseq}}[\mathrm{Ca}]_{\mathrm{ SR}}\left ([\mathrm{Calseq}]_{\mathrm{SR}}^{\mathrm{tot}} - [\mathrm{Calseq} \cdot \mathrm{ Ca}]_{\mathrm{ SR}}\right ) \\ & & \qquad \qquad \qquad \qquad \qquad \quad \,\,\,\,\, - k_{\mathrm{off}}^{\mathrm{Calseq}}[\mathrm{Calseq} \cdot \mathrm{ Ca}]_{\mathrm{ SR}}, {}\end{array}$$
(33)

where [Calseq]SR tot is the total concentration of calsequestrin sites available for Ca2+ binding in the SR and [Calseq⋅ Ca]SR is the concentration of Ca2+-bound calsequestrin sites in that compartment. Parameter values are given in Table 6.

1.3 Kinetics of Myosin Light Chain Phosphorylation

1.3.1 CaM Activation of MLCK

Calmodulin (CaM) has four Ca2+ binding sites, with two at the NH2 terminus (low affinity) and two at the COOH terminus (high affinity). Binding of Ca2+ to those sites yields the CaM.Ca4 complex, and CaM.Ca4 binds to myosin light chain kinase (MLCK) to form MLCK.CaM.Ca4, which is the active form of MLCK that phosphorylates MLCs.

The scheme proposed by Fajmut et al. [7] is used to determine the kinetics of formation of MLCK.CaM.Ca4. Subscripts N and C represent two binding sites each for Ca2+ at the NH2 and COOH terminus of CaM, respectively, and the subscript M represents the CaM binding site occupied by MLCK. An underscore (_) denotes an unoccupied site for each of these binding sites. For example, CaMNCM designates MLCK.CaM.Ca4. The kinetic equations for the formation of MLCK are

$$\displaystyle\begin{array}{rcl} \frac{d[\mathrm{CaM}_{\mathrm{-C-}}]} {dt} & =& \left (-k_{-1}^{\mathrm{CaM}} - k_{ 4}^{\mathrm{CaM}}[\mathrm{Ca}]^{2} - k_{ 5}^{\mathrm{CaM}}[\mathrm{MLCK}]_{\mathrm{ free}}\right )[\mathrm{CaM}_{\mathrm{-C-}}] \\ & +& k_{1}^{\mathrm{CaM}}[\mathrm{Ca}]^{2}[\mathrm{CaM}_{\mathrm{ ---}}] + k_{-4}^{\mathrm{CaM}}[\mathrm{CaM}_{\mathrm{ NC-}}] + k_{-5}^{\mathrm{CaM}}[\mathrm{CaM}_{\mathrm{ -CM}}],{}\end{array}$$
(34a)
$$\displaystyle\begin{array}{rcl} \frac{d[\mathrm{CaM}_{\mathrm{N--}}]} {dt} & =& \left (-k_{-2}^{\mathrm{CaM}} - k_{ 3}^{\mathrm{CaM}}[\mathrm{Ca}]^{2}\right )[\mathrm{CaM}_{\mathrm{ N--}}] + k_{2}^{\mathrm{CaM}}[\mathrm{Ca}]^{2}[\mathrm{CaM}_{\mathrm{ ---}}] \\ & +& k_{-3}^{\mathrm{CaM}}[\mathrm{CaM}_{\mathrm{ NC-}}], {}\end{array}$$
(34b)
$$\displaystyle\begin{array}{rcl} \frac{d[\mathrm{CaM}_{\mathrm{NC-}}]} {dt} & =& \left (-k_{-3}^{\mathrm{CaM}} - k_{ -4}^{\mathrm{CaM}} - k_{ 7}^{\mathrm{CaM}}[\mathrm{MLCK}]_{\mathrm{ free}}\right )[\mathrm{CaM}_{\mathrm{NC-}}] \\ & +& k_{3}^{\mathrm{CaM}}[\mathrm{Ca}]^{2}[\mathrm{CaM}_{\mathrm{ N--}}] + k_{4}^{\mathrm{CaM}}[\mathrm{Ca}]^{2}[\mathrm{CaM}_{\mathrm{ -C-}}] \\ & +& k_{-7}^{\mathrm{CaM}}[\mathrm{Ca}]^{2}[\mathrm{CaM}_{\mathrm{ NCM}}], {}\end{array}$$
(34c)
$$\displaystyle\begin{array}{rcl} \frac{d[\mathrm{CaM}_{\mathrm{-CM}}]} {dt} & =& \left (-k_{-5}^{\mathrm{CaM}} - k_{ 6}^{\mathrm{CaM}}[\mathrm{Ca}]^{2}\right )[\mathrm{CaM}_{\mathrm{ -CM}}] + k_{5}^{\mathrm{CaM}}[\mathrm{MLCK}]_{\mathrm{ free}}[\mathrm{CaM}_{\mathrm{-C-}}] \\ & +& k_{-6}^{\mathrm{CaM}}[\mathrm{Ca}]^{2}[\mathrm{CaM}_{\mathrm{ NCM}}], {}\end{array}$$
(34d)
$$\displaystyle\begin{array}{rcl} \frac{d[\mathrm{CaM}_{\mathrm{NCM}}]} {dt} & =& \left (-k_{-6}^{\mathrm{CaM}} - k_{ -7}^{\mathrm{CaM}}[\mathrm{Ca}]^{2}\right )[\mathrm{CaM}_{\mathrm{ NCM}}] + k_{6}^{\mathrm{CaM}}[\mathrm{Ca}]^{2}[\mathrm{CaM}_{\mathrm{ -CM}}] \\ & +& k_{7}^{\mathrm{CaM}}[\mathrm{MLCK}]_{\mathrm{ free}}[\mathrm{CaM}_{\mathrm{NC-}}], {}\end{array}$$
(34e)
$$\displaystyle\begin{array}{rcl} [\mathrm{CaM}]^{\mathrm{tot}}& =& [\mathrm{CaM}_{\mathrm{ ---}}] + [\mathrm{CaM}_{\mathrm{-C-}}] + [\mathrm{CaM}_{\mathrm{N--}}] + [\mathrm{CaM}_{\mathrm{NC-}}], \\ & +& [\mathrm{CaM}_{\mathrm{-CM}}] + [\mathrm{CaM}_{\mathrm{NCM}}], {}\end{array}$$
(34f)
$$\displaystyle{ [\mathrm{MLCK}]^{\mathrm{tot}} = [\mathrm{CaM}_{\mathrm{ -CM}}] + [\mathrm{CaM}_{\mathrm{NCM}}] + [\mathrm{MLCK}]_{\mathrm{free}}, }$$
(34g)

where the on- and off-rate constants are denoted by k i CaM and k i CaM, respectively, [MLCK]free is the concentration of free (unbound) MLCK, [CaM]tot is the total concentration of calmodulin, [MLCK]tot is the total concentration of MLCK, and the subscript “cyt” that denotes the cytosolic compartment is omitted for simplicity. Parameter values are given in Table 7.

Table 7 Parameters for MLCK and MLCP kinetics

The buffering terms in the Ca2+ conservation equations (12d) and (13) are given by

$$\displaystyle\begin{array}{rcl} R_{\mathrm{CaM}}^{\mathrm{cyt}}& =& -2\frac{d[\mathrm{CaM}_{\mathrm{N--}}]} {dt} - 2\frac{d[\mathrm{CaM}_{\mathrm{-C-}}]} {dt} - 2\frac{d[\mathrm{CaM}_{\mathrm{-CM}}]} {dt} \\ & -& 4\frac{d[\mathrm{CaM}_{\mathrm{NC-}}]} {dt} - 4\frac{d[\mathrm{CaM}_{\mathrm{NCM}}]} {dt}, {}\end{array}$$
(35a)
$$\displaystyle{ R_{\mathrm{Bf}}^{\mathrm{cyt}} = -\frac{d[\mathrm{Bf} \cdot \mathrm{ Ca}]_{\mathrm{cyt}}} {dt}, }$$
(35b)
$$\displaystyle{ R_{\mathrm{Calseq}}^{\mathrm{SR}} = -\frac{d[\mathrm{Calseq} \cdot \mathrm{ Ca}]_{\mathrm{SR}}} {dt}. }$$
(35c)

1.3.2 Rho-Kinase Inhibition of MLCP

Myosin light chain phosphatase (MLCP) consists of three subunits, one of which, MYPT1, can be phosphorylated by Rho kinase (RhoK). Rho-K-induced phosphorylation of MYPT1 inactivates MLCP, which promotes contraction. The cytosolic concentration of active MLCP (denoted MLCP) is given by

$$\displaystyle{ \frac{d[\mathrm{MLCP}^{{\ast}}]} {dt} = k_{+}^{\mathrm{MLCP}}\left ([\mathrm{MLCP}]^{\mathrm{tot}} - [\mathrm{MLCP}^{{\ast}}]\right ) - k_{ -}^{\mathrm{MLCP}}[\mathrm{MLCP}^{{\ast}}], }$$
(36)

where [MLCP]tot is the total concentration of MLCP in the cytosol and the inactivation of MLCP by RHoK is given by

$$\displaystyle{ k_{-}^{\mathrm{MLCP}} = k_{\mathrm{ cat}}[\mathrm{RhoK}] }$$
(37)

(Mbikou et al. [13]). The concentration of RhoK, [RhoK], is assumed to be fixed at 30 nM (Kaneko-Kawano et al. [9]) except in the presence of specific inhibitors. Parameter values are given in Table 7.

1.3.3 MLCK- and MLCP-Dependent Phosphorylation of Myosin

The contractile force of the vessels is determined by the fraction of myosin cross-bridges that are phosphorylated. The four types of cross-bridges considered are free cross-bridges (Myo), phosphorylated cross-bridges (MyoP), attached phosphorylated cycling cross-bridges (AMyoP), and attached dephosphorylated, non-cycling cross-bridges (AMyo), and the corresponding equations for their concentrations are

$$\displaystyle{ \frac{d[\mathrm{Myo}]} {dt} = -k_{1}^{\mathrm{Myo}}[\mathrm{Myo}] + k_{ 2}^{\mathrm{Myo}}[\mathrm{MyoP}] + k_{ 7}^{\mathrm{Myo}}[\mathrm{AMyo}], }$$
(38a)
$$\displaystyle{ \frac{d[\mathrm{MyoP}]} {dt} = +k_{1}^{\mathrm{Myo}}[\mathrm{Myo}] - (k_{ 2}^{\mathrm{Myo}} + k_{ 3}^{\mathrm{Myo}})[\mathrm{MyoP}] + k_{ 4}^{\mathrm{Myo}}[\mathrm{AMyoP}], }$$
(38b)
$$\displaystyle{ \frac{d[\mathrm{AMyoP}]} {dt} = +k_{3}^{\mathrm{Myo}}[\mathrm{MyoP}] - (k_{ 4}^{\mathrm{Myo}} + k_{ 5}^{\mathrm{Myo}})[\mathrm{AMyoP}] + k_{ 6}^{\mathrm{Myo}}[\mathrm{AMyo}], }$$
(38c)
$$\displaystyle{ [\mathrm{Myo}]^{\mathrm{tot}} = [\mathrm{Myo}] + [\mathrm{MyoP}] + [\mathrm{AMyoP}] + [\mathrm{AMyo}]. }$$
(38d)

The rate constants k 3 Myo, k 4 Myo, and k 7 Myo are fixed (Yang et al. [19]). Parameter values are given in Table 7.

The rate constants k 1 Myo and k 6 Myo represent the activity of MLCK and are assumed to be proportional to the fraction of the fully activated form of the enzyme, while the rate constants k 2 Myo and k 5 Myo represent the activity of MLCP. The corresponding equations are

$$\displaystyle{ k_{1}^{\mathrm{Myo}} = k_{ 6}^{\mathrm{Myo}} = k_{\mathrm{ MLCK}}^{\mathrm{Myo}}\frac{[\mathrm{CaM}_{\mathrm{NCM}}]} {[\mathrm{CaM}]^{\mathrm{tot}}}, }$$
(39a)
$$\displaystyle{ k_{2}^{\mathrm{Myo}} = k_{ 5}^{\mathrm{Myo}} = k_{\mathrm{ MLCP}}^{\mathrm{Myo}} \frac{[\mathrm{MLCP}^{{\ast}}]} {[\mathrm{MLCP}]^{\mathrm{tot}}}, }$$
(39b)

where k MLCK Myo and k MLCP Myo are fixed.

1.4 Mechanical Behavior of Cell

The vasomotion of the afferent arteriole is affected by the variations in the number of cross-bridges, which induce variations in the contractile force and thus alter the diameter of the vessel. Edwards and Layton [5] implemented the model of Carlson et al. [1] that represents vessel wall tension as the sum of a passive component and an active myogenic component. The passive component, T pass, is a function of the vessel diameter, D,

$$\displaystyle{ T_{\mathrm{pass}} = C_{\mathrm{pass}}\exp \left [C_{\mathrm{pass}}^{{\prime}}\left ( \frac{D} {D_{0}} - 1\right )\right ], }$$
(40)

where D 0 is the reference vessel diameter.

The active myogenic component is the product of the maximal active tension generated at a given vessel circumference, T act max, given by

$$\displaystyle{ T_{\mathrm{act}}^{\mathrm{max}} = C_{\mathrm{ act}}\exp \left [-\left (\frac{D/D_{0} - C_{\mathrm{act}}^{{\prime}}} {C_{\mathrm{act}}^{{\prime\prime}}} \right )^{2}\right ], }$$
(41)

and the fraction of myosin light chains that are phosphorylated, Ψ. Therefore, the total tension in the wall, T wall, is

$$\displaystyle{ T_{\mathrm{wall}} = T_{\mathrm{pass}} +\varPsi T_{\mathrm{act}}^{\mathrm{max}}. }$$
(42)

The change in vessel diameter depends on the difference between the tension resulting from intravascular pressure p, T pres = pD∕2, and the tension generated in the wall, T wall, so that

$$\displaystyle{ \frac{dD} {dt} = \frac{1} {\tau _{\mathrm{d}}} \frac{D_{\mathrm{c}}} {T_{\mathrm{c}}} (T_{\mathrm{pres}} - T_{\mathrm{wall}}), }$$
(43)

where D c is a reference diameter, T c is the tension at a pressure of 100 mmHg and diameter D c, and τ d is a time constant. Parameter values are given in Table 8.

Table 8 Parameters for smooth muscle cell mechanics

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s) and the Association for Women in Mathematics

About this paper

Cite this paper

Ciocanel, MV., Stepien, T.L., Edwards, A., Layton, A.T. (2017). Modeling Autoregulation of the Afferent Arteriole of the Rat Kidney. In: Layton, A., Miller, L. (eds) Women in Mathematical Biology. Association for Women in Mathematics Series, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-60304-9_5

Download citation

Publish with us

Policies and ethics